Advertisement

Progressive Contour Coding in the Wavelet Domain

  • Nicola Adami
  • Pietro Gallina
  • Riccardo Leonardi
  • Alberto Signoroni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3893)

Abstract

This paper presents a new wavelet-based image contour coding technique, suitable for representing either shapes or generic contour maps. Starting from a contour map (e.g. a segmentation map or the result of an edge detector process), a unique one-dimensional signal is generated from the set of contour points. Coordinate jumps between contour extremities when under a tolerance threshold represent signal discontinuities but they can still be compactly coded in the wavelet domain. Exceeding threshold discontinuities are coded as side information. This side information and the amount of remaining discontinuity are minimized by an optimized contour segment sequencing. The obtained 1D signal is decomposed and coded in the wavelet domain by using a 1D extension of the SPIHT algorithm. The described technique can efficiently code any kind of 2D contour map, from one to many unconnected contour segments. It guarantees a fully embedded progressive coding, state-of-art coding performance, good approximation capabilities for both open and closed contours, and graceful visual degradation at low bit-rates.

Keywords

Side Information Wavelet Domain Contour Point Unequal Error Protection Contour Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zahn, C.T., Roskies, R.Z.: FourierDescriptorsforPlaneClosedCurves. IEEE Trans.Computers 21(3), 269–281 (1972)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lee, S., Cho, D., Cho, Y., Son, S., Jang, E., Shin, J., Seo, Y.: Binary Shape Coding Using Baseline-Based Method. IEEE Trans. Circ. and Sys. for VideoTechnol. 9(1), 44–58 (1999)Google Scholar
  3. 3.
    O’Connell, K.J.: Object-adaptive vertex-based shape coding method. IEEE Trans. Circ. and Sys. for Video Technol. 7, 251–255 (1997)Google Scholar
  4. 4.
    Yamaguchi, N., Ida, T., Watanabe, T.: Abinary shape coding method using modified MMR. In: In:Proc. of Int. Conf. on Image Proc., pp. 504–508 (1997)Google Scholar
  5. 5.
    Brady, N., Bossen, F., Murphy, N.: Context-based arithmetic encoding of 2D shape sequences. In: Proc. of Int. Conf. on Image Proc., pp. 29–32 (1997)Google Scholar
  6. 6.
    Said, A., Pearlman, W.A.: A new, fast, and efficient image code based on Set Partitioning in Hierarchical Trees. IEEE Trans. Circ. and Sys. for Video Technol. 6(3), 243–250 (1996)Google Scholar
  7. 7.
    Signoroni, A., Arrigoni, M., Lazzaroni, F., Leonardi, R.: Improving SPIHT-based compression of volumetric medical data. In: Proc. of Picture Coding Symp., pp. 187–190 (2001)Google Scholar
  8. 8.
    Katsaggelos, A.K., Kondi, L.P., Meier, F.W., Ostermann, J., Schuster, G.M.: MPEG-4 and rate-distortion-based shape-coding techniques. Proceedings of the IEEE 86(6), 1126–1154 (1998)CrossRefGoogle Scholar
  9. 9.
    Canny, J.: A computational approach to edge detection. IEEE Trans. on Pattern Anal. and Machine Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  10. 10.
    Eden, M., Kocher, M.: On the performance of a contour coding algorithm in the contex to image coding-Part I: Contour segment coding. Signal Processing 8, 381–386 (1985)Google Scholar
  11. 11.
    Kuhn, M.: JBIGKIT lossless image compression library, http://www.cl.cam.ac.uk/~mgk25/jbigkit/

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nicola Adami
    • 1
  • Pietro Gallina
    • 1
  • Riccardo Leonardi
    • 1
  • Alberto Signoroni
    • 1
  1. 1.Dipartimento di Elettronica per l’AutomazioneUniversità degli Studi di Brescia, Telecommunications GroupBresciaItaly

Personalised recommendations