Advertisement

A Computational Approach to Pocklington Certificates in Type Theory

  • Benjamin Grégoire
  • Laurent Théry
  • Benjamin Werner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3945)

Abstract

Pocklington certificates are known to provide short proofs of primality. We show how to perform this in the framework of formal, mechanically checked, proofs. We present an encoding of certificates for the proof system Coq which yields radically improved performances by relying heavily on computations inside and outside of the system (two-level approach).

Keywords

Virtual Machine Prime Number Type Theory Prime Divisor Formal Proof 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    GNU Multiple Precision Arithmetic Library, http://www.swox.com/gmp/
  3. 3.
    Barendregt, H., Barendsen, E.: A Computational Approach to Pocklington Certificates 113. Autarkic computations in formal proofs. J. Autom. Reasoning 28(3), 321–336 (2002)CrossRefMATHGoogle Scholar
  4. 4.
    Brillhart, J., Lehmer, D.H., Selfridge, J.L.: New primality criteria and factorizations of 2m ± 1. Mathematics of Computation 29, 620–647 (1975)MathSciNetMATHGoogle Scholar
  5. 5.
    Brillhart, J., Lehmer, D.H., Selfridge, J.L., Tuckerman, B., Wagstaff Jr., S.S.: Factorizations of bn ± 1. In: Contemporary Mathematics, vol. 22. American Mathematical Society, Providence (1983); b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powersGoogle Scholar
  6. 6.
    Caprotti, O., Oostdijk, M.: Formal and efficient primality proofs by use of computer algebra oracles. Journal of Symbolic Computation 32(1/2), 55–70 (2001)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: International Conference on Functional Programming 2002, pp. 235–246. ACM Press, New York (2002)Google Scholar
  8. 8.
    Harrison, J., Théry, L.: A skeptic’s approach to combining HOL and Maple. J. Autom. Reasoning 21(3), 279–294 (1998)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Lang, S.: Algebra, 3rd edn. Graduate Texts in Mathematics, vol. 211. Springer, New York (2002)CrossRefMATHGoogle Scholar
  10. 10.
    Pocklington, H.C.: The determination of the prime or composite nature of large numbers by Fermat’s theorem 18, 29–30 (1914)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Benjamin Grégoire
    • 1
  • Laurent Théry
    • 1
  • Benjamin Werner
    • 2
  1. 1.INRIA Sophia-AntipolisFrance
  2. 2.INRIA FutursFrance

Personalised recommendations