Advertisement

A Lexical Alignment Model for Probabilistic Textual Entailment

  • Oren Glickman
  • Ido Dagan
  • Moshe Koppel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3944)

Abstract

This paper describes the Bar-Ilan system participating in the Recognising Textual Entailment Challenge. The paper proposes first a general probabilistic setting that formalizes the notion of textual entailment. We then describe a concrete alignment-based model for lexical entailment, which utilizes web co-occurrence statistics in a bag of words representation. Finally, we report the results of the model on the Recognising Textual Entailment challenge dataset along with some analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge. MIT Press, Cambridge (1990)Google Scholar
  2. 2.
    Bar-Haim, R., Szpektor, I., Glickman, O.: Definition and Analysis of Intermediate Entailment Levels. In: ACL 2005 Workshop on Empirical Modeling of Semantic Equivalence and Entailment (2005)Google Scholar
  3. 3.
    Bos, J., Markert, K.: Recognising Textual Entailment with Robust Logical Inference. In: Quiñonero-Candela, J., et al. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 404–426. Springer, Heidelberg (2006)Google Scholar
  4. 4.
    Brown, P.F., Della Pietra, V.J., Della Pietra, S.A., Mercer, R.L.: The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics 19(2), 263–311 (1993)Google Scholar
  5. 5.
    Chierchia, G., McConnell-Ginet, S.: Meaning and grammar: An introduction to semantics, 2nd edn. MIT Press, Cambridge (2001)Google Scholar
  6. 6.
    Corley, C., Mihalcea, R.: Measuring the Semantic Similarity of Texts. In: ACL 2005 Workshop on Empirical Modeling of Semantic Equivalence and Entailment (2005)Google Scholar
  7. 7.
    Dagan, I., Glickman, O.: Probabilistic Textual Entailment: Generic Applied Modeling of Language Variability. In: PASCAL workshop on Learning Methods for Text Understanding and Mining (2004)Google Scholar
  8. 8.
    Dagan, I., Glickman, O., Magnini, B.: The PASCAL Recognising Textual Entailment Challenge. In: Quiñonero-Candela, J., et al. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 404–426. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Geffet, M., Dagan, I.: Feature Vector Quality and Distributional Similarity. In: Coling 2004 (2004)Google Scholar
  10. 10.
    Geffet, M., Dagan, I.: The Distributional Inclusion Hypotheses and Lexical Entailment. In: ACL 2005 (2005)Google Scholar
  11. 11.
    Glickman, O., Dagan, I.: Identifying Lexical Paraphrases From a Single Corpus: A Case Study for Verbs. In: Recent Advantages in Natural Language Processing, RANLP (2003)Google Scholar
  12. 12.
    Glickman, O., Dagan, I., Koppel, M.: A Probabilistic Classification Approach for Lexical Textual Entailment. In: Twentieth National Conference on Artificial Intelligence, AAAI (2005)Google Scholar
  13. 13.
    Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence 46, 311–350 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jijkoun, V., de Rijke, M.: Recognizing Textual Entailment: Is Lexical Similarity Enough? In: Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 449–460. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Leacock, C., Chodorow, M., Miller, G.: Using corpus statistics and wordnet relations for sense disambiguation. Computational Linguistics 24(1), 147–165 (1998)Google Scholar
  16. 16.
    Lin, D.: Automatic Retrieval and Clustering of Similar Words. In: COLING-ACL (1998)Google Scholar
  17. 17.
    Miller, G.A.: WordNet: A Lexical Databases for English. CACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  18. 18.
    Monz, C., de Rijke, M.: Light-Weight Entailment Checking for Computational Semantics. In: Proc. of the third workshop on inference in computational semantics, ICoS-3 (2001)Google Scholar
  19. 19.
    Ponte, J.M., Croft, W.B.: A Language Modeling Approach to Information Retrieval. In: SIGIR conference on Research and Development in Information Retrieval (1998)Google Scholar
  20. 20.
    Saggion, H., Gaizauskas, R., Hepple, M., Roberts, I., Greenwood, M.: Exploring the Performance of Boolean Retrieval Strategies for Open Domain Question Answering. In: Proceedings of the Workshop on Information Retrieval for Question Answering, SIGIR 2004 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Oren Glickman
    • 1
  • Ido Dagan
    • 1
  • Moshe Koppel
    • 1
  1. 1.Bar Ilan UniversityRamat GanIsrael

Personalised recommendations