Style Animations Generated from Dynamic Model

  • Dengming Zhu
  • Zhaoqi Wang
  • Shihong Xia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3942)


Recently, motion capture is widely used in the human animation. But it is still difficult to create new-style animations from the existing motion capture data. In this paper, we propose a novel technique to create the style animations from an existing motion sequence. Firstly, we use linear time-invariant system (LTI) to derive an explicit mapping between the high-dimensional motion capture data and the low-dimensional state variables. Secondly, new style animations are created within the state space. Only a few important keyframes need be modified through adjusting the low-dimensional style variables. The remaining frames of the original motion can be generated automatically. Finally, we design an effective algorithm to calculate the model parameters. Experimental results show that the generated style animations are natural and smooth.


Motion Data Motion Capture Motion Sequence Principal Component Analysis Method Dynamic Texture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Li, Y., Wang, T., Shum, H.-Y.: Motion Texture: A Two-Level Statistical Model for Character Motion Synthesis. ACM Transactions on Graphics (Proc. SIGGRAPH 2002) 21(3), 465–472 (2002)Google Scholar
  2. 2.
    Gleicher, M.: Comparing constraint-based motion editing methods. Graph Models 63, 107–134 (2001)MATHCrossRefGoogle Scholar
  3. 3.
    Witkin, A., Popovic, Z.: Motion Warping. Computer Graphics (SIGGRAPH 1995) 29(4), 105–108 (1995)Google Scholar
  4. 4.
    Witkin, A., Kass, M.: Spacetime constraints. Computer Graphics(SIGGRAPH 1988) 22, 159–168 (1988)CrossRefGoogle Scholar
  5. 5.
    Gleicher, M.: Retargetting motion to new characters. SIGGRAPH 1998 32, 33–42 (1998)CrossRefGoogle Scholar
  6. 6.
    Gleicher, M.: Motion path editing. In: Proceedings of the 2001 ACM symposium on interactive 3D graphics, Research Triangle Park, NC, pp. 195–202 (March 2001)Google Scholar
  7. 7.
    Kovar, L., Schreiner, J., Gleicher, M.: Footstake cleanup for motion capture editing. In: Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 97–104 (2002)Google Scholar
  8. 8.
    Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-like figures. In: SIGGRAPH 1999, pp. 39–48 (1999)Google Scholar
  9. 9.
    Bruderlin, A., Williams, L.: Motion signal processing. In: Proceedings of ACM SIGGRAPH 1995, pp. 97–104 (1995)Google Scholar
  10. 10.
    Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human figure animation. In: Proceedings of ACM SIGGRAPH 1995, pp. 91–96 (1995)Google Scholar
  11. 11.
    Pullen, K., Bregler, C.: Motion Capture Assisted Animation: Texturing and Synthesis. In: Proc SIGGRAPH 2002, pp. 501–508 (2002)Google Scholar
  12. 12.
    Jolliffe, I.T.: Principal Component Analysis. Springer series in statistics. Springer, Heidelberg (1986)Google Scholar
  13. 13.
    Glardon, P., Boulic, R., Thalmann, D.: PCA-based Walking Engine using Motion Capture Data. In: Proceeding of Computer Graphics International (CGI), Crete, Greece, pp. 292–298 (2004)Google Scholar
  14. 14.
    Glardon, P., Boulic, R., Thalmann, D.: A Coherent Locomotion Engine Extrapolating Beyond Experimental Data. In: Proceedings of Computer Animation and Social Agent (CASA), Geneva, Switzerland, pp. 73–84 (July 2004)Google Scholar
  15. 15.
    Urtasun, R., Glardon, P., Boulic, R., Thalmann, D., Fua, P.: Style-Based Motion Synthesis. Computer Graphics Forum 23(4), 799–812 (2004)CrossRefGoogle Scholar
  16. 16.
    Müller, W., Alexa, M.: Representing animations by principal components. In: Gross, M., Hopgood, F.R.A. (eds.) Computer Graphics Forum (Eurographics 2000), vol. 19(3), pp. 411–426 (2000)Google Scholar
  17. 17.
    Lim, I., Thalmann, D.: Construction of animation models out of captured data. In: Proc. IEEE Conf. on Multimedia and Expo, ICME 2002, vol. 1, pp. 829–832 (2002)Google Scholar
  18. 18.
    Tanco, L.M., Hilton, A.: Realistic synthesis of novel human movements from a database of motion capture examples. In: IEEE Workshop on Human Motion, pp. 137–142 (2000)Google Scholar
  19. 19.
    Brand, M., Hertzmann, A.: Style machines. In: ACM SIGGRAPH 2000, pp. 183–192 (2000)Google Scholar
  20. 20.
    Soatto, S., Doretto, G., Wu, Y.N.: Dynamic textures. In: IEEE International Conference on Computer Vision, pp. 439–446 (2001)Google Scholar
  21. 21.
    Ljung, L.: System Identification. Theory for the User, 2nd edn. Prentice Hall, Englewood Cliffs (1999)Google Scholar
  22. 22.
    Grassia, F.S.: Practical parameterization of rotations using the exponential map. Journal of Graphics Tools 3(3), 29–48 (1998)Google Scholar
  23. 23.
    Ghahramani, Z., Hinton, G.E.: Parameter estimation for linear dynamical systems. University of Toronto Technical Report CRG-TR-96-2, 6 pages (1996)Google Scholar
  24. 24.
    Nocedal, J., Wright, S.: Numerical Optimization. Springer, Heidelberg (1999)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dengming Zhu
    • 1
    • 2
  • Zhaoqi Wang
    • 1
  • Shihong Xia
    • 1
  1. 1.Institute of Computing TechnologyChinese Academy of Sciences 
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations