Retrieval of 3D Video Mosaics for Fast 3D Visualization

  • Jaechoon Chon
  • Eihan Shimizu
  • Ryosuke Shibasaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3942)


3D video mosaics created by 3D image mosaicking, our previous research, are for 3D visualization of the roadside standing building scene captured by a side-looking video camera as a continuous set of vertical-textured planar faces. These vertical faces were concatenated to create an approximate model on which the images could be back-projected as textures. We proposed a retrieval technique of selecting vertical-textured planar faces from archived 3D image mosaics to fast represent a 3D world, where this selection is based on proximity to the user location in the virtual world. The chosen vertical-textured planar faces are recomposed as a continuous set formed stream and are then rendered in 3D virtual space.


Feature Point Virtual World Bundle Adjustment Retrieval Technique Image Mosaic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zhao, H., Shibasaki, R.: A vehicle-borne urban 3D acquisition system using single-row laser range scanners. IEEE Transactions on SMC Part B: Cybernetics 33(4), 658–666 (2003)CrossRefGoogle Scholar
  2. 2.
    Fruh, C., Zakhor, A.: Data processing algorithms for generating textured 3D building facade meshes from laser scans and camera images. In: Proc. 3D Data Processing, Visualization and Transmission 2002, Padua, Italy (2002)Google Scholar
  3. 3.
    Pollefeys, M., Koch, R., Vergauwen, M., Van Gool, L.: Automated reconstruction of 3D scenes from sequences of images. ISPRS Journal of Photogrammetry And Remote Sensing 55(4), 251–267 (2000)CrossRefGoogle Scholar
  4. 4.
    USGS Hurricane Mitch Program Projects,
  5. 5.
    Szeliski, R.: Video mosaic for virtual enviroment,Comput. Graph. Applicat. 16(3), 22–30 (1996)CrossRefGoogle Scholar
  6. 6.
    Chou, J.S., Qian, J., Wu, Z., Schramm, H.: Automatic mosaic and display from a sequence of peripheral angiographic images. In: Proc. of SPIE, Medical Imaging, California, vol. 3034, pp. 1077–1087 (1997)Google Scholar
  7. 7.
    Standard MPEG4: Information technology-coding of audio-visual objects, ver. 1. ISO/IEC 14, 496 (1999)Google Scholar
  8. 8.
    Mikhail, E.M., Bethel, J.S., McGlone, J.C.: Introduction to modern photogrammetry, pp. 80–151. John Wiley and Sons, Inc., Chichester (2001)Google Scholar
  9. 9.
    Hartly, R.I., Zisserman, A.: Multiple view geometry. Cambridge University Press, Cambridge (2000)Google Scholar
  10. 10.
    Jiang, B., You, S., Neumann, U.: A robust tracking system for outdoor augmented reality. In: IEEE Virtual Reality 2004, Chicago, pp. 3–10 (2004)Google Scholar
  11. 11.
    Mann, S., Picard, R.: Virtual Bellows: Constructing High Quality Stills from Video. In: Proc, First IEEE Int’l Conf. Image Processing, vol. 1, pp. 363–367 (1994)Google Scholar
  12. 12.
    Chen, S.E.: Quicktime VR-An Image-Based Approach to Virtual Environment Navigation. In: Proc. ACM SIGGRAPH 1995, pp. 29–38 (1995)Google Scholar
  13. 13.
    McMillan, L., Bishop, G.: Plenoptic Modeling: An Image Based Rendering System. In: Proc. ACM SIGGRAPH 1995, pp. 39–46 (1995)Google Scholar
  14. 14.
    Krishnan, A., Ahuja, N.: Panoramic Image Acuisition. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 379–384 (1996)Google Scholar
  15. 15.
    Shum, H.Y., Szeliski, R.: Construction of Panoramic Image Mosaics with Global and Local Alignment. IJCV 36(2), 101–130 (2000)CrossRefGoogle Scholar
  16. 16.
    Coorg, S., Teller, S.: Spherical mosaics with quaternions and dense correlation. IJCV 37(3), 259–273 (2000)MATHCrossRefGoogle Scholar
  17. 17.
    Zomet, A., Pleeg, S., Arora, C.: Rectified Mosaicking: Mosaics without the Curl. In: International Conference on Computer Vision and Pattern Recognition, II, pp. 459–465 (2000)Google Scholar
  18. 18.
    Zheng, J.Y., Tsuji, S.: Panoramic Representation for Route Recognition by a Mobile Robot. IJCV 9(1), 55–76 (1992)CrossRefGoogle Scholar
  19. 19.
    Peleg, S., Rousso, B., Rav-Acha, A., Zomet, A.: Mosaicing on Adaptive Manifolds. IEEE Tr. on PAMI 22(10), 1144–1154 (2000)Google Scholar
  20. 20.
    Zhu, Z., Hanson, A.R., Riseman, E.M.: Generalized parallel-perspective stereo mosaics from airborne video. IEEE Tr. on PAMI 26(2), 226–237 (2004)Google Scholar
  21. 21.
    Zomet, A., Feldman, D., Peleg, S., Weinshall, D.: Mosaicking new views: the crossed-slits projection. IEEE Tr. on PAMI 25(6), 741–754 (2003)Google Scholar
  22. 22.
    Rom, A., Garg, G., Levoy, M.: Interactive Design of Multi-Perspective Image for Visualizing Urban Landscapes. In: Proc. Visualization (2000)Google Scholar
  23. 23.
    Chon, J., Fuse, T., Shimizu, E.: Urban Visualization through Video Mosaics Based on 3-D Multi-baselines. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science 35(B3), 727–731 (2004)Google Scholar
  24. 24.
    Han, J.H., Park, J.S.: Contour matching using epipolar geometry. IEEE Tr. on PAMI 22(4), 358–370 (2000)Google Scholar
  25. 25.
    Canny, J.: A Computational Approach to Edge Detection. IEEE Tr. on PAMI 8(6) (1986)Google Scholar
  26. 26.
    Zheng, Z., Wang, X.: A general solution of a closed-form space resection. PE and RS 58(3), 327–338 (1992)MathSciNetGoogle Scholar
  27. 27.
    Rousseeuw, P.J.: Least median of squares regression. Journal of American Statistics Association 79, 871–880 (1984)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jaechoon Chon
    • 1
  • Eihan Shimizu
    • 2
  • Ryosuke Shibasaki
    • 1
  1. 1.Center for Spatial Information Science at the University of TokyoJapan
  2. 2.Department of Civil EngineeringThe University of TokyoJapan

Personalised recommendations