Advertisement

Dynamic Surface Deformation and Modeling Using Rubber Sweepers

  • Chengjun Li
  • Wenbing Ge
  • Guoping Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3942)

Abstract

We introduce a new surface deformation and modeling method in this paper. Referring to the swept volume generation, the surface is pulled or pushed along a trajectory curve. The key point is the sweeping function. Surface points are moved to where they should be during sweeping operations according to the global parameter, which is determined by topological distance. An index factor controls how much the surface deforms around the handle point. The proposed method is easy to extend to fit different applications such as various constraints, local deformation and animations.

Keywords

Geodesic Distance Subdivision Scheme Boundary Constraint Topological Distance FIFO Queue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barr, A.H.: Global and local deformation of solid primitives. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 18(3), pp. 21–30 (1984)Google Scholar
  2. 2.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 20(4), pp. 151–160 (1986)Google Scholar
  3. 3.
    Hsu, W.H., Hughes, J.F., Kaufman, H.: Direct manipulation of free-form deformations. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 26(2), pp. 177–184 (1992)Google Scholar
  4. 4.
    Coquillart, S.: Extended free-form deformation: a sculpting tool for 3D geometric modeling. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 24(4), pp. 187–196 (1990)Google Scholar
  5. 5.
    Lazarus, F., Coquillart, S., Jancène, P.: Axial deformations: an intuitive deformation technique. Computer-Aided Design 26(8), 607–613 (1994)MATHCrossRefGoogle Scholar
  6. 6.
    Zorin, D., Schröder, P., Sweldens, W.: Interactive multiresolution mesh editing. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 31(4), pp. 259–268 (1997)Google Scholar
  7. 7.
    Boier-Martin, I.M., Ronfard, R., Bernardini, F.: Detail-preserving variational surface design with multiresolution constraints. In: Proceedings of Shape Modeling International (SMI) 2004, Genova, Italy, pp. 119–128 (June 2004)Google Scholar
  8. 8.
    Wang, G., Sun, J., Hua, X.: The sweep-envelope differential equation algorithm for general deformed swept volumes. Computer Aided Geometric Design 17(5), 399–418 (2000)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Wang, G., Sun, J.: Shape control of swept surface with profiles. Computer-Aided Design 33(12), 893–902 (2001)CrossRefGoogle Scholar
  10. 10.
    Weinert, K., Du, S., Damm, P., Stautner, M.: Swept volume generation for the simulation of machining processes. International Journal of Machine Tools & Manufacture 44, 617–628 (2004)CrossRefGoogle Scholar
  11. 11.
    Choi, B.K., Lee, C.: Sweep surfaces modeling via coordinate transformations and blending. Computer-Aided Design 22(2), 87–96 (1990)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Piegel, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997)Google Scholar
  13. 13.
    Angelidis, A., Wyvill, G., Cani, M.P.: Sweepers: swept user-defined tools for modeling by deformation. In: International Conference on Shape Modeling and Applications 2004 (SMI 2004), pp. 63–73 (2004)Google Scholar
  14. 14.
    Dyn, N., Levin, D., Gregory, J.A.: A butterfly subdivision scheme for surface interpolation with tension control. ACM Transactions on Graphics 9(2), 160–169 (1990)MATHCrossRefGoogle Scholar
  15. 15.
    Zorin, D., Schröder, P., Sweldens, W.: Interpolating subdivision for meshes with arbitrary topology. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, vol. 30, pp. 189–192 (1996)Google Scholar
  16. 16.
    Zhang, C., Zhang, N., Li, C., Wang, G.: Marker-controlled perception-based mesh segmentation. In: Proceedings of the Third International Conference on Image and Graphics (ICIG 2004), Hong Kong, China, December 18-20, pp. 390–393 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chengjun Li
    • 1
  • Wenbing Ge
    • 1
  • Guoping Wang
    • 1
  1. 1.Peking UniversityBeijingChina

Personalised recommendations