A 3D Model Feature-Line Extraction Method Using Mesh Sharpening

  • Hao Jing
  • Bingfeng Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3942)


The feature-line extraction of a 3D model is a key step in the model-based Non-Photorealistic Rendering. In this paper, we introduce a new algorithm that is based on a sharpening filter to extract the feature-lines of 3D models. Experiments of feature-line rendering where our sharpening filter is introduced as a pre-calculation step are shown to compare with the existing algorithms ([1][2][3]). From these experiments it can be found that our rendering results reserve more feature details and contain less noise. Furthermore, in our algorithm, the computation time of rendering is also reduced.


Triangle Mesh Gaussian Smoothing Root Operation Radial Curvature Vertex Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hertzmann, A., Zorin, D.: Illustrating smooth surface. In: Proceedings of SIGGRAPH 2000. ACM, New York (2000)Google Scholar
  2. 2.
    DeCarlo, D., Finkelstein, A., Rusinkicwicz, S., Santella, A.: Suggestive contours for conveying shape. ACM Transactions on Graphics 22(3), 848–855 (2003)CrossRefGoogle Scholar
  3. 3.
    Sousa, M.C., Prusinkiewicz, P.: A few good lines: Suggestive drawing of 3d models. Computer Graphics Forum 22(3), 381–390 (2003)CrossRefGoogle Scholar
  4. 4.
    Gooch, B., Gooch, A.: Non-photorealistic Rendering. A K Peters, Ltd., Wellesley (2001)Google Scholar
  5. 5.
    Raskar, R., Cohen, M.: Image precision silhouette edges. In: Symposium on Interactive 3D Graphics 1999. ACM, New York (1999)Google Scholar
  6. 6.
    Markosian, L., Kowalski, M.A., Trychin, S.J., Bourdev, L.D.: Real-time nonphotorealistic rendering. In: Proceedings of SIGGRAPH 1997. ACM, New York (1997)Google Scholar
  7. 7.
    Kalnins, R.D., Markosian, L., Meier, B.J., Kowalski, M.A., Lee, J.C.: Wysiwyg npr: Drawing strokes directly on 3d models. In: Proceedings of SIGGRAPH 2002. ACM, New York (2002)Google Scholar
  8. 8.
    Decarmo, M.P.: Differential Geometry of Curves and Surface. Cambridge Univ. Press, Cambridge (1976)Google Scholar
  9. 9.
    Taubin, G.: Estimating the tensor of curvature of a surface from a polyhedral approximation. In: Proc. 5th International Conference on Computer Vision (ICCV 1995) (1995)Google Scholar
  10. 10.
    Hameri, E., Shimshoni, I.: Estimating the principal curvature and the darboux frame from real 3d range data. In: Proc. International Symposium on 3D Data Processing Visualization and Transmission, pp. 258–267 (2002)Google Scholar
  11. 11.
    Neumann, L., Csebfalvi, B., Konig, A., Groller, E.: Gradient estimation in volume data using 4d linear regression. Computer Graphics Forum 19(3), 351–357 (2000)CrossRefGoogle Scholar
  12. 12.
    Isenberg, T., Halper, N., Strothotte, T.: Stylizing silhouettes at interactive rates: from silhouette edges to silhouette strokes. Computer Graphics Forum 21(3), 249–258 (2002)CrossRefGoogle Scholar
  13. 13.
    Page, D.L., Sun, Y., Koschan, A.F., Paik, J., Abidi, M.A.: Normal vector voting: crease detection and curvature estimation on large, noisy meshes. Graphical Models 64(3-4), 199–229 (2002)MATHCrossRefGoogle Scholar
  14. 14.
    Taubin, G.: Curve and surface smoothing without shrinkage. In: ICCV 1995. IEEE, Los Alamitos (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hao Jing
    • 1
  • Bingfeng Zhou
    • 1
  1. 1.Institute of Computer Science and TechnologyPeking University 

Personalised recommendations