Advertisement

Comparing Different Architectures for Query Routing in Peer-to-Peer Networks

  • Henrik Nottelmann
  • Norbert Fuhr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3936)

Abstract

Efficient and effective routing of content-based queries is an emerging problem in peer-to-peer networks, and can be seen as an extension of the traditional “resource selection” problem. Although some approaches have been proposed, finding the best architecture (defined by the network topology, the underlying selection method, and its integration into peer-to-peer networks) is still an open problem. This paper investigates different building blocks of such architectures, among them the decision-theoretic framework, CORI, hierarchical networks, distributed hash tables and HyperCubes. The evaluation on a large test-bed shows that the decision-theoretic framework can be applied effectively and cost-efficiently onto peer-to-peer networks.

Keywords

Hash Table Distribute Hash Table Resource Selection Hierarchical Network Centralise Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bender, M., Michel, S., Zimmer, C., Weikum, G.: Bookmark-driven query routing in peer-to-peer web search. In: Callan, et al. (eds.) [3]Google Scholar
  2. 2.
    Callan, J., Cormack, G., Clarke, C., Hawking, D., Smeaton, A. (eds.): Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, New York (2003)Google Scholar
  3. 3.
    Callan, J., Fuhr, N., Nejdl, W. (eds.): SIGIR Workshop on Peer-to-Peer Information Retrieval (2004)Google Scholar
  4. 4.
    Callan, J.P., Lu, Z., Croft, W.B.: Searching distributed collections with inference networks. In: Fox, E.A., Ingwersen, P., Fidel, R. (eds.) Proceedings of the 18th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 21–29. ACM, New York (1995)Google Scholar
  5. 5.
    French, J., Powell, A., Callan, J., Viles, C., Emmitt, T., Prey, K., Mou, Y.: Comparing the performance of database selection algorithms. In: Proceedings of the 22nd International Conference on Research and Development in Information Retrieval, pp. 238–245. ACM, New York (1999)Google Scholar
  6. 6.
    Fuhr, N.: A decision-theoretic approach to database selection in networked IR. ACM Transactions on Information Systems 17(3), 229–249 (1999)CrossRefGoogle Scholar
  7. 7.
    Harren, M., Hellerstein, J.M., Huebsch, R., Loo, B.T.L., Shenker, S., Stoica, I.: Complex queries in DHT-based peer-to-peer networks. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, p. 242. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Lu, J., Callan, J.: Content-based retrieval in hybrid peer-to-peer networks. In: Kraft, D., Frieder, O., Hammer, J., Qureshi, S., Seligman, L. (eds.) Proceedings of the 12th International Conference on Information and Knowledge Management. ACM, New York (2003)Google Scholar
  9. 9.
    Lu, J., Callan, J.: Federated search of text-based digital libraries in hierarchical peer-topeer networks. In: Callan, et al. (eds.) [3]Google Scholar
  10. 10.
    Nottelmann, H., Fuhr, N.: Evaluating different methods of estimating retrieval quality for resource selection. In: Callan, et al. (eds.) [2]Google Scholar
  11. 11.
    Ritter, J.: Why Gnutella can’t scale. No, really (2001), http://www.darkridge.com/~jpr5/doc/gnutella.html
  12. 12.
    Robertson, S.E., Walker, S., Hancock-Beaulieu, M., Gull, A., Lau, M.: Okapi at TREC. In: Text REtrieval Conference, pp. 21–30 (1992)Google Scholar
  13. 13.
    Schlosser, M., Sintek, M., Decker, S., Nejdl, W.: Digital libraries. In: 1st Workshop on Agents and P2P Computing (2005)Google Scholar
  14. 14.
    Si, L., Callan, J.: A semi-supervised learning method to merge search engine results. ACM Transactions on Information Systems 24, 457–491 (2003)CrossRefGoogle Scholar
  15. 15.
    Si, L., Jin, R., Callan, J., Ogilvie, P.: Language modeling framework for resource selection and results merging. In: Nicholas, C., Grossman, D., Kalpakis, K., Qureshi, S., van Dissel, H., Seligman, L. (eds.) Proceedings of the 11th International Conference on Information and Knowledge Management. ACM, New York (2002)Google Scholar
  16. 16.
    Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: ACM SIGCOMM (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Henrik Nottelmann
    • 1
  • Norbert Fuhr
    • 1
  1. 1.Department of InformaticsUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations