Advertisement

An Efficient Static Blind Ring Signature Scheme

  • Qianhong Wu
  • Fanguo Zhang
  • Willy Susilo
  • Yi Mu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3935)

Abstract

Blind group/ring signatures are useful for applications such as e-cash and e-voting systems. In this paper, we show that the blindness of some existing blind group/ring signature schemes is easy to break by a malicious anonymous signer of dynamic groups. However, this risk has not been pointed out in these proposals, which may cause misuse of the schemes. Fortunately, for static groups, it is possible to integrate the blindness of message into group/ring signatures. An efficient static blind ring signature is proposed with its security provable under the extended ROS assumptions in the random oracle model plus the generic group model. After the group public key is generated, the space, time, and communication complexities of the relevant parameters and operations are constant.

Keywords

Signature Scheme Ring Signature Random Oracle Blind Signature Random Oracle Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Ohkubo, M., Suzuki, K.: 1-out -of-n signatures from a variety of keys. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 415–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Baric, N., Pfitzman, B.: Collision-free accumulators and fail-stop signature schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 480–494. Springer, Heidelberg (1997)Google Scholar
  5. 5.
    Bresson, E., Stern, J., Szydlo, M.: Threshold ring signatures and applications to ad-hoc groups. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 465–480. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Chan, T.K., Fung, K., Liu, J.K., Wei, V.K.: Blind Spontaneous Anonymous Group Signatures for Ad Hoc Groups. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004. LNCS, vol. 3313, pp. 82–94. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Chan, A., Frankel, Y., Tsiounis, Y.: Easy Come - Easy Go Divisible Cash. Updated version with corrections, GTE Tech. Rep. (1998), available at: http://www.ccs.neu.edu/home/yiannis/
  8. 8.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  9. 9.
    Chaum, D.: Blind signatures for untraceable payments. In: Proc. Crypto 1982, pp. 199–203. Plenum Press, New York (1983)Google Scholar
  10. 10.
    Camenisch, J., Koprowski, M., Warinschi, B.: Efficient Blind Signatures Without Random Oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Camenisch, J., Stadler, M.: Efficient group signatures for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 465–479. Springer, Heidelberg (1997)Google Scholar
  13. 13.
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous Identification in Ad Hoc Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Hastad, J., Schrift, A.W., Shamir, A.: The discrete logarithm modulo a composite hides O(n) bits. JCSS: Journal of Computer and System Sciences 47(3), 376–404 (1993)MathSciNetMATHGoogle Scholar
  15. 15.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004), http://eprint.iacr.org/2004/007.pdf CrossRefGoogle Scholar
  16. 16.
    Lysyanskaya, A., Ramzan, Z.: Group Blind Digital Signatures: A Scalable Solution to Electronic Cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. 17.
    Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  18. 18.
    Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Mathematical Notes 55, 165–172 (1994)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Nguyen, K.Q., Mu, Y., Varadharajan, V.: Divertible Zero-Knowledge Proof of Polynomial Relations and Blind Group Signature. In: Pieprzyk, J.P., Safavi-Naini, R., Seberry, J. (eds.) ACISP 1999. LNCS, vol. 1587, pp. 117–128. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  20. 20.
    Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)CrossRefMATHGoogle Scholar
  21. 21.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Schnorr, C.P.: Security of blind discrete log signatures against interactive attacks. In: Qing, S., Okamoto, T., Zhou, J. (eds.) ICICS 2001. LNCS, vol. 2229, pp. 1–12. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  23. 23.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997)Google Scholar
  24. 24.
    Tsudik, G., Xu, S.: Accumulating composites and improved group signing. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 269–286. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Wagner, D.: A Generalized Birthday Problem (Extended Abstract). In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  26. 26.
    Wu, Q., Chen, X., Wang, C., Wang, Y.: Shared-Key Signature and Its Application to Anonymous Authentication in Ad Hoc Group. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 330–341. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Zhang, F., Kim, K.: ID-Based blind signature and ring signature from pairings. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 533–547. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qianhong Wu
    • 1
  • Fanguo Zhang
    • 2
  • Willy Susilo
    • 1
  • Yi Mu
    • 1
  1. 1.Center for Information Security Research, School of Information Technology and Computer ScienceUniversity of WollongongWollongongAustralia
  2. 2.School of Information Science and TechnologySun Yat-sen UniversityGuangzhou, Guangdong ProvinceP.R. China

Personalised recommendations