Sift and Sort: Climbing the Semantic Pyramid

  • H. V. D. Parunak
  • Peter Weinstein
  • Paul Chiusano
  • Sven Brueckner
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3910)


Information processing operations in support of intelligence analysis are of two kinds. They may sift relevant data from a larger body, thus reducing its quantity, or sort that data, thus reducing its entropy. These two classes of operation typically alternate with one another, successively shrinking and organizing the available data to make it more accessible and understandable. We term the resulting construct, the “semantic pyramid.” We sketch the general structure of this construct, and illustrate two adjacent layers of it that we have implemented in the Ant CAFÉ.


Community Model Query Model Intelligence Analysis Concept Vector Relevance Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso, R., Li, H.: Model-Guided Information Discovery for Intelligence Analysis. In: Proceedings of CIKM 2005. Bremen, Germany (2005)Google Scholar
  2. 2.
    Berkhin, P.: Survey Of Clustering Data Mining Techniques. In: Accrue Software, San Jose, CA (2002),
  3. 3.
    CNS. CNS WMD Databases. CD (2004)Google Scholar
  4. 4.
    Coffey, J.W., Hoffman, R.R., Cañas, A.J., Ford, K.M.: A Concept Map-Based Knowledge Modeling Approach to Expert Knowledge Sharing. In: Proceedings of IASTED International Conference on Information and Knowledge Sharing (2002),
  5. 5.
    Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chretien, L.: The Dynamics of Collective Sorting: Robot-Like Ants and Ant-Like Robots. In: Meyer, J.A., Wilson, S.W. (eds.) Proceedings of the First International Conference on Simulation of Adaptive Behavior From Animals to Animats, pp. 356–365. MIT Press, Cambridge (1991)Google Scholar
  6. 6.
    Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Data Mining Researchers. In: HPL-2003-2004, HP Laboratories, Palo Alto, CA (2003),
  7. 7.
    Fellbaum, C.: WordNet: An Electronic Lexical Database Language, Speech, and Communication. MIT, Cambridge (1998)MATHGoogle Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman, San Francisco (1979)MATHGoogle Scholar
  9. 9.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3) (1999)Google Scholar
  10. 10.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(6), 71–80 (1983)MathSciNetMATHGoogle Scholar
  11. 11.
    Miller, G.A.: In: WordNet: A Lexical Database for the English Language. Web Page (2002),
  12. 12.
    Parunak, H.V.D.: ’Go to the Ant’: Engineering Principles from Natural Agent Systems. Annals of Operations Research 75, 69–101 (1997), CrossRefMATHGoogle Scholar
  13. 13.
    Parunak, H.V.D., Brueckner, S.A., Matthews, R., Sauter, J.: Pheromone Learning for Self-Organizing Agents. IEEE SMC 35(3), 316–326 (2005), Google Scholar
  14. 14.
    Parunak, H.V.D., Brueckner, S.A., Sauter, J.A., Matthews, R.: Global Convergence of Local Agent Behaviors. In: Proceedings of Fourth International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2005), pp. 305–312. Utrecht, The Netherlands (2005), CrossRefGoogle Scholar
  15. 15.
    Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)Google Scholar
  16. 16.
    Weinstein, P., Parunak, H.V.D., Chiusano, P., Brueckner, S.: Agents Swarming in Semantic Spaces to Corroborate Hypotheses. In: Proceedings of AAMAS 2004, New York, pp. 1488–1489 (2004),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • H. V. D. Parunak
    • 1
  • Peter Weinstein
    • 1
  • Paul Chiusano
    • 1
  • Sven Brueckner
    • 1
  1. 1.Altarum InstituteAnn ArborUSA

Personalised recommendations