Advertisement

How Bee-Like Agents Support Cultural Heritage

  • Martí Fàbregas
  • Beatriz López
  • Josep Masana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3910)

Abstract

Elderly people are a great repository of knowledge, the majority of which has never been gathered by formal means. In this paper we introduce an application of multi-agent systems to support knowledge acquisition from this rich repository knowledge which is only available from elderly and experienced people. Our system provides the opportunity to complement different versions of the same knowledge produced in an extensive geographical and cultural region with the main objective of supporting Cultural Heritage. Users without much technological knowledge can search or leave information about some type of knowledge. Then, the system behaves like a swarm of bees, in this way the bee-like agents process the user contributions and the knowledge emerges from the system. Queen-like agents, honey-bee, drones and foragers have different roles inside the hive: looking for information resemblances, computing information confidence, checking the necessity of knowledge validation, and updating user’s reliability. The system’s feasibility has been tested on the specific area of ethnobotany, which concerns the ways in which specific societies name and classify plants.

Keywords

Multiagent System Traditional Knowledge Swarm Intelligence Certainty Factor Knowledge Validation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    En c prou., http://xixi.udg.es/
  2. 2.
    Bonabeau, E., Dorigo, M., Théraulaz, G.: Swarm intelligence, from natural to artificial systems. Oxford University Press, Oxford (1999)MATHGoogle Scholar
  3. 3.
    Théraulaz, G., Bonabeau, E.: Swarm smarts, Scientific American (2000)Google Scholar
  4. 4.
    Capó, B.: Costumari valencià, 2nd edn. Edicions el Bullent (1994)Google Scholar
  5. 5.
    Cicirello, V.A., Smith, S.F.: Wasp-like agents for distributed factory coordination. In: Autonomous Agents and Multi-Agent Systems, vol. 8, pp. 237–266 (2004)Google Scholar
  6. 6.
    Hadeli, K., Valckenaers, P., Saint-Germain, B., Verstraete, P., BalaZamfirescu, C., Van Brussel, H.: Emergent forecasting using a stigmergy approach in manufacturing coordination and control. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2005. LNCS, vol. 3464, pp. 210–226. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Hassas, S.: Using swarm intelligence for dynamic web content organizing. In: Proc.Swarm Intelligence (2003)Google Scholar
  8. 8.
    Iacoban, R., Reynolds, R.G., Brewster, J.: Cultural swarms: Modeling the impact of culture in social interactions and problem solving. In: Proc. Swarm Intelligence (2003)Google Scholar
  9. 9.
    Folger, T., Klir, G.A.: fuzzy sets, uncertainly, and information. Prentice Hall, Englewood Cliffs (1992)Google Scholar
  10. 10.
    Pellicer, J.: Costumari bot‘anic. Picanya: Edicions del Bullent SL (2000)Google Scholar
  11. 11.
    Rianyo, D., Moreno, A., Isern, D., Bocio, J., Sànchez, D., Jiménez, L.: Knowledge exploitation from the web. In: Karagiannis, D., Reimer, U. (eds.) PAKM 2004. LNCS (LNAI), vol. 3336, pp. 175–185. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Rychtyckyj, N., Ostrowski, D., Schleis, G., Reynolds, R.G.: Using cultural algorithms in industry. In: Proc. Swarm Intelligence (2003)Google Scholar
  13. 13.
    Shortliffe, E.H.: Computer based medical consultation: Mycin. Elsevier, New York (1976)Google Scholar
  14. 14.
    Tena, M.L.: Manteniment de la fiabilitat dels usuaris i de la confianca en la informaci ó d’una base de coneixements populars autoorganitzada a través d’un sistema multiagent. BsCThesis, University of Girona. (In Catalan) (2004)Google Scholar
  15. 15.
    Valls Mateu, A.: Clusdm: A multiple criteria decision making method for heterogeneous data sets. PhDThesis, IIIA, CSIC, Bellaterra, Spain (2003)Google Scholar
  16. 16.
    Van Parunak., H.D.: Go to the ant: Engineering principles from natural multiagent systems. In: Annals of Operations Research., vol. 75, pp. 69–101 (1997)Google Scholar
  17. 17.
    Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. Journal of Articial Intelligence Research 6(1), 1–34 (1997)MathSciNetMATHGoogle Scholar
  18. 18.
    Yang, Y., Kamel, M.: Clustering ensemble using swarm intelligence. In: Proc. Swarm Intelligence (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martí Fàbregas
    • 1
  • Beatriz López
    • 1
  • Josep Masana
    • 1
  1. 1.University of GironaGirona

Personalised recommendations