Mesoscopic Modeling of Emergent Behavior – A Self-organizing Deliberative Minority Game

  • Wolfgang Renz
  • Jan Sudeikat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3910)


Recent research discussed several approaches to understand the relation between microscopic agent behavior and macroscopic multi–agent system (MAS) behavior. A structured methodology to derive these models will have impact on MAS design, evaluation and debugging. Current results have established the description of macroscopic behavior, including cooperation, by Rate Equations derived from markovian agent–states transitions. Emergent phenomena elude these descriptions. In this paper, we argue that mesoscopic modeling is needed to provide appropriate descriptions of emergent system behavior. The mesoscopic agent states reflect the emergent behavior and allow for a deliberative implementation of the rules and conditions which cause the MAS to self–organize as wanted. In a case study, we construct such a mesoscopic model for the socio-economic inspired Minority Game. The mesoscopic description leads us to a deliberative implementation, which exhibits equivalent self–organizing behavior, confirming our results.


Multiagent System Macroscopic Behavior Emergent Behavior Emergent Phenomenon Mesoscopic Modeling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jennings, N.R.: On agent-based software engineering. Artif. Intell. 117, 277–296 (2000)CrossRefMATHGoogle Scholar
  2. 2.
    Jennings, N.R.: Building complex, distributed systems: the case for an agent-based approach. Comms. of the ACM 44(4), 35–41 (2001)CrossRefGoogle Scholar
  3. 3.
    Iglesias, C., Garrijo, M., Gonzalez, J.: A survey of agent-oriented methodologies. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 317–330. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Tveit, A.: A survey of agent-oriented software engineering (2000)Google Scholar
  5. 5.
    Wei, G.: Agent orientation in software engineering. Knowledge Engineering Review 16(4), 349–373 (2002)Google Scholar
  6. 6.
    Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann, San Francisco (2001)Google Scholar
  7. 7.
    Parunak, H.V.D.: Making swarming happen. In: Proceedings of Swarming and Networkenabled C4ISR (2003)Google Scholar
  8. 8.
    Ando, Y., Masutani, O., Sasaki, H., Iwasaki, H., Fukazawa, Y., Honiden, S.: Pheromone model: Application to traffic congestion prediction. In: Proceedings of the International Workshop on Engineering Self-Organising Applications (2005)Google Scholar
  9. 9.
    Tatara, E., North, M., Hood, C., Teymour, F., Cinar, A.: Agent–based control of spatially distributed chemical reactor networks. In: Proceedings of the International Workshop on Engineering Self-Organising Applications (2005)Google Scholar
  10. 10.
    Parunak, H.V.D., Brueckner, S., Savit, R.: Universality in multi-agent systems. In: AAMAS 2004: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 930–937. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  11. 11.
    Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Model checking rational agents. IEEE Intelligent Systems 19(5), 46–52 (2004)CrossRefGoogle Scholar
  12. 12.
    Poutakidis, D., Padgham, L., Winikoff, M.: Debugging multi-agent systems using design artifacts: The case of interaction protocols (2002)Google Scholar
  13. 13.
    Zambonelli, F., Mamei, M., Roli, A.: What can cellular automata tell us about the behavior of large multi-agent systems? In: Garcia, A.F., de Lucena, C.J.P., Zambonelli, F., Omicini, A., Castro, J. (eds.) Software Engineering for Large-Scale Multi-Agent Systems. LNCS, vol. 2603, pp. 216–231. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Wolf, T.D., Holvoet, T., Samaey, G.: Engineering self-organising emergent systems with simulation-based scientific analysis. In: Proceedings of the International Workshop on Engineering Self-Organising Applications (2005)Google Scholar
  15. 15.
    Brueckner, S., Parunak, H.V.D.: Information-driven phase changes in multi-agent coordination. In: Proceedings of the International Workshop on Engineering Self-Organising Applications (2005)Google Scholar
  16. 16.
    Lerman, K., Galstyan, A.: Automatically modeling group behavior of simple agents. In: Agent Modeling Workshop, AAMAS 2004, New York, NY (2004)Google Scholar
  17. 17.
    Galstyan, A., Lerman, K.: Analysis of a stochastic model of adaptive task allocation in robots. In: AAMAS 2004, New York, NY (2004)Google Scholar
  18. 18.
    Lerman, K., Galstyan, A.: A general methodology for mathematical analysis of multiagent systems (2001)Google Scholar
  19. 19.
    Lerman, K.: Design and mathematical analysis of agent-based systems. In: Rash, J.L., Rouff, C.A., Truszkowski, W., Gordon, D.F., Hinchey, M.G. (eds.) FAABS 2000. LNCS (LNAI), vol. 1871, pp. 222–234. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Agassounon, W., Martinoli, A., Easton, K.: Macroscopic modeling of aggregation experiments using embodied agents in teams of constant and time-varying sizes. Autonomous Robots Journal (2003)Google Scholar
  21. 21.
    Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots: Effect of interference. Autonomous Robots 13, 127–141 (2002)CrossRefMATHGoogle Scholar
  22. 22.
    Lerman, K., Galstyan, A.: Agent memory and adaptation in multi-agent systems. In: AAMAS 2003: Proceedings of the second international joint conference on Autonomous agents and multiagent systems, pp. 797–803. ACM Press, New York (2003)CrossRefGoogle Scholar
  23. 23.
    Wolf, T.D., Holvoet, T.: Emergence and self-organisation: a statement of similarities and differences. In: Proceedings of the International Workshop on Engineering Self-Organising Applications, pp. 96–110 (2004)Google Scholar
  24. 24.
    Challet, D., Zhang, Y.C.: Emergence of cooperation and organization in an evolutionary game. Physica A 246, 407 (1997)CrossRefGoogle Scholar
  25. 25.
    Martinoli, A., Easton, K.: Modeling swarm robotic systems. In: Siciliano, B., Dario, P. (eds.) Proc. of the Eight Int. Symp. on Experimental Robotics ISER 2002. Number 5 in Springer Tracts in Advanced Robotics, pp. 297–306 (2003)Google Scholar
  26. 26.
    Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Revised edn. Elsevier Science Pub Co, Amsterdam (2001)MATHGoogle Scholar
  27. 27.
    Arthur, W.B.: Inductive reasoning and bounded rationality. American Economic Review 84, 406–411 (1994), avilable at Google Scholar
  28. 28.
    Li, Y., VanDeemen, A., Savit, R.: The minority game with variable payoffs. Physica A 284, 461–477 (2000)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Metzler, R., Horn, C.: Evolutionary minority games: the benefits of imitation. Physica 329, 484–498 (2003)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Johnson, N., Hui, P., Jonson, R., Lo, T.: Self-organized segregation within an evolving population. Physical Review Letters 82, 3360 (1999)CrossRefGoogle Scholar
  31. 31.
    Reents, G., Metzler, R., Kinzel, W.: A stochastic strategy for the minority game. Physica A 299, 253–261 (2001)CrossRefMATHGoogle Scholar
  32. 32.
    Challet, D., Marsili, M., Zhang, Y.C.: Minority Games - Interacting agents in financial markets. In: Number 0-19-856640-9 in Series: Oxford Finance Series. Oxford University Press, Oxford (2004)Google Scholar
  33. 33.
    Challet, D.: Competition between adaptive agents: from learning to collective efficiency and back.chapter to appear in Collectives and the design of complex systems. cond-mat/0210319. Springer, Heidelberg (2003)Google Scholar
  34. 34.
    Xie, Y., Wang, B.H., Hu, C., Zhou, T.: Global Optimization of Minority Game by Smart Agents. ArXiv Condensed Matter e-prints (2004)Google Scholar
  35. 35.
    Zhong, L.X., Zheng, D.F., Zheng, B., Hui, P.: Effects of contrarians in the minority game. cond-mat/0412524 (2004)Google Scholar
  36. 36.
    Renz, W., Sudeikat, J.: Modeling minority games with bdi agents - a case study. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, pp. 71–81. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  37. 37.
    Bazzan, A.L., Bordini, R.H., Andrioti, G.K., Vicari, R.M.: Wayward agents in a commuting scenario (personalities in the minority game). In: Proc. of the Fourth Int. Conf. on Multi-Agent Systems (ICMAS 2000), Boston. IEEE Computer Science, Los Alamitos (2000)Google Scholar
  38. 38.
    Bratman, M.E.: Intentions, Plans, and Practical Reason. Harvard Univ. Press, Cambridge (1987)Google Scholar
  39. 39.
    Rao, A.S., Georgeff, M.P.: BDI-agents: from theory to practice. In: Proceedings of the First Intl. Conference on Multiagent Systems, San Francisco (1995)Google Scholar
  40. 40.
    Rao, A.S.: Agentspeak(l): Bdi agents speak out in a logical computable language. In: Perram, J., Van de Velde, W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp. 42–55. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  41. 41.
    Braubach, L., Pokahr, A., Lamersdorf, W., Moldt, D.: Goal representation for bdi agent systems. In: Bordini, R.H., Dastani, M., Dix, J., Fallah-Seghrouchni, A.E. (eds.) Second International Workshop on Programming Multiagent Systems: Languages and Tools, pp. 9–20 (2004)Google Scholar
  42. 42.
    Braubach, L., Pokahr, A., Lamersdorf, W.: Jadex: A short overview. In: Main Conference Net.ObjectDays 2004, pp. 195–207 (2004)Google Scholar
  43. 43.
    Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: Implementing a bdiinfrastructure for jade agents. EXP - in search of innovation (Special Issue on JADE) 3, 76–85 (2003)Google Scholar
  44. 44.
    Bellifemine, F., Rimassa, G., Poggi, A.: Jade a fipa-compliant agent framework. In: 4th International Conference on the Practical Applications of Agents and Multi-Agent Systems (PAAM 1999), London, UK, pp. 97–108 (1999)Google Scholar
  45. 45.
    van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Proc. RE 2001 - Int. Joint Conference on Requirements Engineering (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wolfgang Renz
    • 1
  • Jan Sudeikat
    • 1
  1. 1.Multimedia Systems LaboratoryHamburg University of Applied SciencesHamburgGermany

Personalised recommendations