Advertisement

Analysing Partner Selection Through Exchange Values

  • Maira Ribeiro Rodrigues
  • Michael Luck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3891)

Abstract

Dynamic and resource-constrained environments raise interesting issues for partnership formation and multi-agent systems. In a scenario in which agents interact with each other to exchange services, if computational resources are limited, agents cannot always accept a request, and may take time to find available partners to delegate their needed services. Several approaches are available to solve this problem, which we explore through an experimental evaluation in this paper. In particular, we provide a computational implementation of Piaget’s exchange-values theory, and compare its performance against alternatives.

Keywords

Multiagent System Interaction Partner Task Completion Dependence Relation Partner Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stein, L.: Creating a bioinformatics nation. Nature 417, 119–120 (2002)CrossRefGoogle Scholar
  2. 2.
    Overbeek, R., Disz, T., Stevens, R.: The SEED: A peer-to-peer environment for genome annotation. Communications of the ACM 47, 47–50 (2004)CrossRefGoogle Scholar
  3. 3.
    Castelfranchi, C.: Social Power: A point missed in multi-agent, DAI and HCI. In: Demazeau, Y., Müller, J.P. (eds.) Decentralized A.I., pp. 49–62. Elsevier Science, Amsterdam (1990)Google Scholar
  4. 4.
    Castelfranchi, C., Miceli, M., Cesta, A.: Dependence Relations Among Autonomous Agents. In: Werner, E., Demazeau, Y. (eds.) Decentralized A.I., vol. 3, pp. 215–227. Elsevier, Amsterdam (1992)Google Scholar
  5. 5.
    Piaget, J.: Sociological Studies, Routlege, London (1973)Google Scholar
  6. 6.
    Jennings, N.R.: Coordination techniques for distributed artificial intelligence. In: O’Hare, G.M.P., Jennings, N.R. (eds.) Foundations of Distributed Artificial Intelligence, pp. 187–210 (1996)Google Scholar
  7. 7.
    Rodrigues, M.R., da Rocha Costa, A.C., Bordini, R.H.: A system of exchange values to support social interactions in artificial societies. In: Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems, Melbourne, pp. 81–88 (2003)Google Scholar
  8. 8.
    Miceli, M., Castelfranchi, C.: A Cognitive Approach to Values. Journal for the theory of social behavior 2, 169–193 (1989)CrossRefGoogle Scholar
  9. 9.
    Miceli, M., Castelfranchi, C.: The Role of Evaluation in Cognition and Social Interaction. In: Dautenhahn, K. (ed.) Human Cognition and Social Agent Technology. Advances in Consciousness Research, vol. 19, pp. 225–261. John Benjamins, Amsterdam (2000)CrossRefGoogle Scholar
  10. 10.
    Antunes, L., Coelho, H.: Decisions based upon Multiple Value: The BVG agent architecture. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 297–311. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Antunes, L., Faria, J., Coelho, H.: Improving choice mechanisms within the bvg architecture. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, pp. 290–304. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Sichman, J.S., Conte, R., Castelfranchi, C., Demazeau, Y.: A social reasoning mechanism based on dependence networks. In: Cohn, A.G. (ed.) Proceedings of the Eleventh European Conference on Artificial Intelligence, pp. 188–192. John Wiley and Sons, Chichester (1994)Google Scholar
  13. 13.
    David, N., Sichman, J.S., Coelho, H.: Agent-based simulation with coalitions in social reasoning. In: Moss, S., Davidsson, P. (eds.) MABS 2000. LNCS (LNAI), vol. 1979, pp. 245–266. Springer, Heidelberg (2001)Google Scholar
  14. 14.
    Lopez, F.L., Luck, M., d’Inverno, M.: A framework for norm-based inter-agent dependence. In: Proceedings of the Third Mexican International Conference on Computer Science, pp. 31–40 (2001)Google Scholar
  15. 15.
    d’Inverno, M., Luck, M.: A formal view of social dependence networks. In: Zhang, C., Lukose, D. (eds.) DAI 1995. LNCS, vol. 1087, pp. 115–129. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    Saha, S., Sen, S., Dutta, P.S.: Helping based on future expectations. In: Second International Joint Conference on Autonomous Agents and Multiagent Systems, Melbourne, pp. 289–296 (2003)Google Scholar
  17. 17.
    Sarne, D., Kraus, S.: Time-variant distributed agent matching applications. In: Third International Joint Conference on Autonomous Agents and Multiagent Systems, New York, pp. 168–175 (2004)Google Scholar
  18. 18.
    Rodrigues, M.R., da Rocha Costa, A.C.: Using qualitative exchange values to improve the modelling of social interactions. In: Hales, D., Edmonds, B., Norling, E., Rouchier, J. (eds.) Multi-Agent-Based Simulation III. LNCS, vol. 2927, pp. 57–72. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maira Ribeiro Rodrigues
    • 1
  • Michael Luck
    • 1
  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations