Visual Modeling for Complex Agent-Based Simulation Systems

  • Candelaria Sansores
  • Juan Pavón
  • Jorge Gómez-Sanz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3891)


Currently there is a diversity of tools for agent-based simulation, which can be applied to the understanding of social phenomena. Describing this kind of phenomena with a visual language can facilitate the use of these tools by users who are not necessarily experts in computer programming, but in social sciences. With this purpose, we propose to define such visual language, which is based on well established concepts of agent-oriented software engineering, and more concretely on the INGENIAS methodology. The proposed language is independent of any particular simulation platform and, by using INGENIAS code generation support, it is possible to generate implementations for the desired target platforms. Also, we consider that modeling should be application domain oriented and that a generic language itself does not suffice. Thus, we discuss at the end how specific domain simulation environments could be achieved.


Motivational Force Complex Adaptive System Visual Modeling Visual Language Model Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AgentSheets. AgentSheets: Agent-based end-user development (2004), available from:
  2. 2.
    Ascape. Ascape: Agent based research (2000), available from:
  3. 3.
    Axelrod, R.: Advancing the Art of Simulation in the Social Sciences. In: Conte, R., et al. (eds.) Simulating Social Phenomena. Lecture Notes in Economics and Mathematical Systems, vol. 456, pp. 21–40. Springer, Berlin (1997)CrossRefGoogle Scholar
  4. 4.
    Conte, R., Castelfranchi, C.: Cognitive and Social Action. UCL Press, London (1995)Google Scholar
  5. 5.
    Conte, R.: Social Intelligence Among Autonomous Agents. Computational and Mathematical Organization Theory 5(3), 203 (1999)CrossRefMATHGoogle Scholar
  6. 6.
    Cormas. Cormas: Natural resources and agent-based simulations (2004), available from:
  7. 7.
    Di Tosto, G., Conte, R., Paolucci, M.: Altruism Among Simple and Smart Vampires. In: Proceedings of the 1st Conference of the European Social Simulation Association (ESSA), Groningen, NL (2003)Google Scholar
  8. 8.
    Drogoul, A., Vanbergue, D., Meurisse, T.: Multi-agent Based Simulation: Where Are the Agents? In: Sichman, J.S., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 1–15. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Ferber, J.: Multi-agent systems: an introduction to distributed artificial intelligence. Addison-Wesley, Harlow (1999)Google Scholar
  10. 10.
    Gilbert, N.: Environments and Languages to Support Social Simulation. In: Troitzsch, K.G., et al. (eds.) Social Science Microsimulation, Schloss Dagstuhl, pp. 457–458. Springer, Berlin (1996)Google Scholar
  11. 11.
    Giret, A., Botti, V., Valero, S.: MAS Methodology for HMS. In: Mařík, V., William Brennan, R., Pěchouček, M. (eds.) HoloMAS 2005. LNCS (LNAI), vol. 3593, pp. 39–49. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Holland, J.H.: Emergence: from chaos to order. Addison-Wesley, Reading (1998)MATHGoogle Scholar
  13. 13.
    Marietto, M.B., David, N., Sichman, J.S., Coelho, H.: Requirements Analysis of Agent-Based Simulation Platforms: State of the Art and New Prospects. In: Sichman, J.S., Bousquet, F., Davidsson, P. (eds.) MABS 2002. LNCS (LNAI), vol. 2581, pp. 125–141. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Mason. Mason: Multiagent Simulation Toolkit (2004), available from:
  15. 15.
    NetLogo. NetLogo: Center for Connected Learning and Computer-Based Modeling (2004), available from:
  16. 16.
    Pavón, J., Gómez-Sanz, J.: Agent Oriented Software Engineering with INGENIAS. In: Mařík, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS (LNAI), vol. 2691, pp. 394–403. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Repast. Repast: Recursive Porus Agent Simulation Toolkit ( 2004), available from:
  18. 18.
    Sansores, C., Pavón, J.: Agent Based Simulation for Social Systems: from Modeling to Implementation. In: 11th Conference of the Spanish Association for Artificial Intelligence, Santiago de Compostela, Spain. LNCS, Springer, Heidelberg (to appear, 2005)Google Scholar
  19. 19.
    SDML. SDML: a Strictly Declarative Modelling Language (1997), available from:
  20. 20.
    SeSAm. SeSAm: Integrated Environment for Multi-Agent Simulation (2004), available from:
  21. 21.
    StarLogo. StarLogo: on the web (2004), available from:
  22. 22.
    Swarm. Swarm Wiki: the agent-based modelling resource ( 2004), available from:
  23. 23.
    Tobias, R., Hofmann, C.: Evaluation of free Java-libraries for Social-Scientific Agent Based Simulation. Journal of Artificial Societies and Social Simulation 7(1) (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Candelaria Sansores
    • 1
  • Juan Pavón
    • 1
  • Jorge Gómez-Sanz
    • 1
  1. 1.Dep. Sistemas Informáticos y ProgramaciónUniversidad Complutense MadridMadridSpain

Personalised recommendations