Advertisement

Time-Dependent Contact Structures in Goguen Categories

  • Michael Winter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3929)

Abstract

In this paper we focus on a theory of time-extended contact. It turns out that a suitable theory can be defined using an \(\mathcal{L}\)-valued or \(\mathcal{L}\)-fuzzy version of a contact relation. We study this structure in the context of Goguen categories – a suitable categorical formalization of \(\mathcal{L}\)-valued or \(\mathcal{L}\)-fuzzy relations.

Keywords

Boolean Algebra Relational Product Contact Structure Fuzzy Relation Abstract Version 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biacino, L., Gerla, G.: Connection Structures. Notre Dame Journal of Formal Logic 32, 242–247 (1991)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Clarke, B.L.: A calculus of individuals based on ‘connenction’. Notre Dame Journal of Formal Logic 22, 204–218 (1981)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Düntsch, I., Winter, M.: Finite Contact Structure. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) RelMiCS 2005. LNCS, vol. 3929. Springer, Heidelberg (2006) CrossRefGoogle Scholar
  4. 4.
    Freyd, P., Scedrov, A.: Categories, Allegories. North-Holland, Amsterdam (1990)MATHGoogle Scholar
  5. 5.
    Furusawa, H.: Algebraic Formalisations of Fuzzy Relations and their Representation Theorems. Ph.D-Thesis, Department of Informatics, Kyushu University, Japan (1998)Google Scholar
  6. 6.
    Goguen, J.A.: L-fuzzy sets. J. Math. Anal. Appl. 18, 145–157 (1967)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Kawahara, Y., Furusawa, H.: Crispness and Representation Theorems in Dedekind Categories. DOI-TR 143, Kyushu University (1997)Google Scholar
  8. 8.
    Kawahara, Y., Furusawa, H.: An Algebraic Formalization of Fuzzy Relations. Fuzzy Sets and Systems 101, 125–135 (1999)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Leonard, H.S., Goodman, N.: The calculus of individuals and its use. Journal of Symbolic Logic 5, 45–55 (1940)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Olivier, J.P., Serrato, D.: Catégories de Dedekind. Morphismes dans les Catégories de Schröder. C.R. Acad. Sci. Paris 290, 939–941 (1980)MATHGoogle Scholar
  11. 11.
    Olivier, J.P., Serrato, D.: Squares and Rectangles in Relational Categories - Three Cases: Semilattice, Distributive lattice and Boolean Non-unitary. Fuzzy sets and systems 72, 167–178 (1995)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Randell, D.A., Cohn, A.G., Cui, Z.: Computing transitivity tables: A challenge for automated theorem provers. In: Kapur, D. (ed.) CADE 1992. LNCS (LNAI), vol. 607, pp. 786–790. Springer, Heidelberg (1992)Google Scholar
  13. 13.
    Schmidt, G., Ströhlein, T.: Relationen und Graphen. Springer, Heidelberg (1989); English version: Relations and Graphs. Discrete Mathematics for Computer Scientists, EATCS Monographs on Theoret. Comput. Sci. Springer, Heidelberg (1993) CrossRefMATHGoogle Scholar
  14. 14.
    Schmidt, G., Hattensperger, C., Winter, M.: Heterogeneous Relation Algebras. In: Brink, C., Kahl, W., Schmidt, G. (eds.) Relational Methods in Computer Science. Advances in Computer Science. Springer, Vienna (1997)Google Scholar
  15. 15.
    Stell, J.: Boolean connection algebras: A new approach to the Region Connection Calculus. Artificial Intelligence 122, 111–136 (2000)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Winter, M.: Strukturtheorie heterogener Relationenalgebren mit Anwendung auf Nichtdetermismus in Programmiersprachen. Dissertationsverlag NG Kopierladen GmbH, München (1998)Google Scholar
  17. 17.
    Winter, M.: A new Algebraic Approach to L-Fuzzy Relations convenient to study Crispness. Information Sciences 139, 233–252 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Winter, M.: Derived Operations in Goguen Categories. Theory and Applications of Categories 10, 220–247 (2002)MathSciNetMATHGoogle Scholar
  19. 19.
    Winter, M.: Relational Constructions in Goguen Categories. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 212–227. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Winter, M.: Representation Theory of Goguen Categories. Fuzzy Sets and Systems 138, 85–126 (2003)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Michael Winter
    • 1
  1. 1.Department of Computer ScienceBrock UniversitySt.CatharinesCanada

Personalised recommendations