Advertisement

Knuth-Bendix Completion as a Data Structure

  • Georg Struth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3929)

Abstract

We propose a cooperating Knuth-Bendix completion procedure for transitive relations and equivalences and apply it as a data structure for novel dynamic strongly connected component algorithms. Benefits are separation of declarative and procedural concerns, simple generic specifications and flexible optimisation via execution strategies.

Keywords

Equivalence Class Transitive Closure Critical Pair Simple Cycle Component Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT Press, Cambridge (1990)MATHGoogle Scholar
  2. 2.
    Demetrescu, C., Italiano, G.: Fully dynamic transitive closure: Breaking through the O(n 2) barrier. In: Proc. 41th IEEE Symp. on Foundations of Computer Science, pp. 381–389. IEEE Computer Society Press, Los Alamitos (2000)Google Scholar
  3. 3.
    Henzinger, M., King, V.: Fully dynamic biconnectivity and transitive closure. In: Proc. 36th Symp. on Foundations of Computer Science, pp. 664–672. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  4. 4.
    Kapur, D.: Shostak’s congruence closure as completion. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 23–37. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  5. 5.
    King, V.: Fully dynamic algorithms for maintaining all-time shortest paths and transitive closure in digraphs. In: Proc. 40th IEEE Symp. on Foundations of Computer Science, pp. 81–89. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  6. 6.
    Nelson, G.: Techniques for program verification. Technical Report CSL-81-10, Xerox Palo Alto Research Center (1981)Google Scholar
  7. 7.
    Shmueli, O.: Dynamic cycle detection. Information Processing Letters 17(4), 185–188 (1983)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Struth, G.: Knuth-Bendix completion for non-symmetric transitive relations. In: van den Brand, M., Verma, R. (eds.) Second International Workshop on Rule-Based Programming (RULE 2001). Electronic Notes in Theoretical Computer Science, vol. 59. Elsevier Science Publishers, Amsterdam (2001)Google Scholar
  9. 9.
    Terese (ed.): Term Rewriting Systems. Cambridge University Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Georg Struth
    • 1
  1. 1.Fakultät für InformatikUniversität der BundeswehrMünchenGermany

Personalised recommendations