Advertisement

Relational Implementation of Simple Parallel Evolutionary Algorithms

  • Britta Kehden
  • Frank Neumann
  • Rudolf Berghammer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3929)

Abstract

Randomized search heuristics, among them evolutionary algorithms, are applied to problems whose structure is not well understood, as well as to hard problems in combinatorial optimization to get near-optimal solutions. We present a new approach implementing simple parallel evolutionary algorithms by relational methods. Populations are represented as relations which are implicitly encoded by (reduced, ordered) binary decision diagrams. Thereby, the creation and evaluation is done in parallel, which increases efficiency considerably.

Keywords

Evolutionary Algorithm Vertex Cover Relational Algebra Present Solution Binary Decision Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Behnke, R., Berghammer, R., Meyer, E., Schneider, P.: RelView — A system for calculation with relations and relational programming. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 318–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Berghammer, R.: A generic program for minimal subsets with applications. In: Leuschel, M.A. (ed.) LOPSTR 2002. LNCS, vol. 2664, pp. 144–157. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Berghammer, R., Hoffmann, T., Leoniuk, B., Milanese, U.: Prototyping and programming with relations. Electronic Notes in Theoretical Computer Science 44 (2003)Google Scholar
  4. 4.
    Berghammer, R., Leoniuk, B., Milanese, U.: Implementation of relational algebra using binary decision diagrams. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 241–257. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. The MIT Press, Cambridge (1990)MATHGoogle Scholar
  6. 6.
    Halperin, E.: Improved approximation algorithms for the vertex cover problem in graphs and hypergraphs. In: Proc. 11th Ann. ACM-SIAM Symp. on Discrete Algorithms, ACM-SIAM (2000)Google Scholar
  7. 7.
    Hromkovic, J.: Algorithms for hard problems. In: Introduction to combinatorial optimization, randomization, approximation, and heuristics. Springer, Heidelberg (2001)Google Scholar
  8. 8.
    Leoniuk, B.: ROBDD-based implementation of relational algebra with applications (in German). Ph.D. thesis, Inst. für Inf. und Prak. Math., Univ. Kiel (2001)Google Scholar
  9. 9.
    Milanese, U.: On the implementation of a ROBDD-based tool for the manipulation and visualization of relations (in German). Ph.D. thesis, Inst. für Inf. und Prak. Math., Univ. Kiel (2003)Google Scholar
  10. 10.
    Schmidt, G., Ströhlein, T.: Relations and graphs. Springer, Heidelberg (1993)CrossRefMATHGoogle Scholar
  11. 11.
    Wegener, I.: Branching programs and binary decision diagrams – theory and applications. SIAM Monographs on Discr. Math. and Appl. (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Britta Kehden
    • 1
  • Frank Neumann
    • 1
  • Rudolf Berghammer
    • 1
  1. 1.Institut für Informatik und Praktische MathematikChristian-Albrechts-Univ. zu KielKielGermany

Personalised recommendations