Advertisement

Implementing Minimized Multivariate PKC on Low-Resource Embedded Systems

  • Bo-Yin Yang
  • Chen-Mou Cheng
  • Bor-Rong Chen
  • Jiun-Ming Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3934)

Abstract

Multivariate (or \(\mathcal{MQ}\)) public-key cryptosystems (PKC) are alternatives to traditional PKCs based on large algebraic structures (e.g., RSA and ECC); they usually execute much faster than traditional PKCs on the same hardware. However, one major challenge in implementing multivariates in embedded systems is that the key size can be prohibitively large for applications with stringent resource constraints such as low-cost smart cards, sensor networks (e.g., Berkeley motes), and radio-frequency identification (RFID). In this paper, we investigate strategies for shortening the key of a multivariate PKC. We apply these strategies to the Tame Transformation Signatures (TTS) as an example and quantify the improvement in key size and running speed, both theoretically and via implementation. We also investigate ways to save die space and energy consumption in hardware, reporting on our ASIC implementation of TTS on a TSMC 0.25μm process. Even without any key shortening, the current consumption of TTS is only 21 μA for computing a signature, using 22,000 gate equivalents and 16,000 100-kHz cycles (160 ms). With circulant-matrix key shortening, the numbers go down to 17,000 gates and 4,400 cycles (44 ms). We therefore conclude: besides representing a future-proofing investment against the emerging quantum computers, multivariates can be immediately useful in niches.

Keywords

Multivariate public-key cryptosystem efficient implementation digital signature schemes embedded system sensor networks motes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akkar, M., Courtois, N., Duteuil, R., Goubin, L.: A Fast and Secure Implementation of SFLASH. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 267–278. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Chou, C.-Y., Hu, Y.-H., Lai, F.-P., Wang, L.-C., Yang, B.-Y.: Tractable Rational Map Signature. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 244–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Courtois, N.: Generic Attacks and the Security of Quartz. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 351–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Courtois, N., Goubin, L., Meier, W., Tacier, J.: Solving Underdefined Systems of Multivariate Quadratic Equations. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 211–227. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, Springer, Heidelberg (2000)Google Scholar
  6. 6.
    Daemen, J., Rijmen, V.: The Design of Rijndael, AES - the Advanced Encryption Standard. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  7. 7.
    Davis, P.: Circulant matrices. John Wiley & Sons, New York-Chichester-Brisbane (1979)zbMATHGoogle Scholar
  8. 8.
    Diem, C.: The XL-Algorithm and a Conjecture from Commutative Algebra. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 323–337. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Ding, J.: A New Variant of the Matsumoto-Imai Cryptosystem through Perturbation. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 305–318. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Ding, J., Gower, J., et al.: Innoculating Multivariate Schemes against Differential Attacks, http://eprint.iacr.org/2005/255/
  11. 11.
    Ding, J., Schmidt, D.: Rainbow, a new Digitial Multivariate Signature Scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Ding, J., Yin, Z.: Cryptanalysis of TTS and tame-like multivariable signature schemes. In: IWAP 2004 (presentation, 2004)Google Scholar
  13. 13.
    Faugère, J.-C.: A New Efficient Algorithm for Computing Gröbner Bases without Reduction to Zero (F5). In: Proceedings of ISSAC 2002, pp. 75–83. ACM Press, New York (2002)Google Scholar
  14. 14.
    Faugère, J.-C.: invited talk at AES4 conference, and private communicationGoogle Scholar
  15. 15.
    Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication for RFID Systems Using the AES Algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Garey, M., Johnson, D.: Computers and Intractability, A Guide to the Theory of NP-completeness, p. 251. Freeman and Co., New York (1979)zbMATHGoogle Scholar
  17. 17.
    Gaubatz, G., Kaps, J.-P., Sunar, B.: Public Key Cryptography in Sensor Networks—Revisited. In: Castelluccia, C., Hartenstein, H., Paar, C., Westhoff, D. (eds.) ESAS 2004. LNCS, vol. 3313, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC Language: A Holistic Approach to Networked Embedded Systems. In: ACM SIGPLAN 2003 Conference on Programming Language Design and Implementation (PLDI), San Diego, CA, USA (June 2003)Google Scholar
  19. 19.
    Gilbert, H., Minier, M.: Cryptanalysis of SFLASH. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, Springer, Heidelberg (2002)Google Scholar
  20. 20.
    Geiselmann, W., Steinwandt, R., Beth, T.: Attacking the Affine Parts of SFLASH. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 355–359. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Goubin, L., Courtois, N.: Cryptanalysis of the TTM Cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, Springer, Heidelberg (2000)Google Scholar
  22. 22.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc. 28th Annual ACM Symposium on the Theory of Computing (May 1996), pp. 212–220 (1996)Google Scholar
  23. 23.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D.E., Pister, K.S.J.: System Architecture Directions for Networked Sensors. In: Proc. 9th International Conference on Architectural Support for Programming Languages and Operating Systems, November 2000, pp. 93–104 (2000)Google Scholar
  24. 24.
    Hu, Y., Wang, L., Chen, J., Lai, F., Chou, C.: A Performance Report and Security Analysis of a fast TTM implementation. In: 2003 IEEE Int’l Symp. on Information Theory, Yokohama, Japan (June 2003)Google Scholar
  25. 25.
    Hu, Y., Wang, L., Lai, F., Chou, C.: Similar Keys of Multivariate Quadratic Public Key Cryptosystems. In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 211–222. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  26. 26.
    Joux, A., Kunz-Jacques, S., Muller, F., Ricordel, P.-M.: Cryptanalysis of the Tractable Rational Map Cryptosystem. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 258–274. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature Schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, Springer, Heidelberg (1999)Google Scholar
  28. 28.
    Lidl, R., Niederreiter, H.: Finite Fields. Addison-Wesley, Reading (1984)zbMATHGoogle Scholar
  29. 29.
    Ljungkvist, S.: in the 8051 code library, http://www.8052.com/codelib.phtm
  30. 30.
    Malan, D., Welsh, M., Smith, M.: A Public-Key Infrastructure for Key Distribution in TinyOS Based on Elliptic Curve Cryptography. In: First IEEE International Conference on Sensor and Ad hoc Communications and Networks (SECON), Santa Clara, CA, USA (October 2004)Google Scholar
  31. 31.
    Matsumoto, T., Imai, H.: Public Quadratic Polynomial-Tuples for Efficient Signature-Verification and Message-Encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  32. 32.
    Matsumoto, M., Nishimura, T.: Mersenne Twister: A 623-Dimensionally Equidistributed Uniform Pseudo-Random Number Generator. ACM Trans. on Modeling and Computer Sim. 8, 3–30 (1998)CrossRefzbMATHGoogle Scholar
  33. 33.
    The NESSIE project homepage, http://www.cryptonessie.org
  34. 34.
    Paar, C.: Some Remarks on Efficient Inversion in Finite Fields. In: 1995 IEEE International Symposium on Information Theory, Whistler, B.C. Canada (September 1995); available from the author’s websiteGoogle Scholar
  35. 35.
    Paar, C.: A New Architechture for a Parallel Finite Field Multiplier with Low Complexity Based on Composition Fields. Brief Contributions section of IEEE Transactions on Computers 45(7), 856–861 (1996)CrossRefzbMATHGoogle Scholar
  36. 36.
    Patarin, J.: Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt 1988. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995)Google Scholar
  37. 37.
    Patarin, J.: Hidden Fields Equations (HFE) and Isomorphisms of Polynomials (IP): Two New Families of Asymmetric Algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  38. 38.
    Patarin, J., Goubin, L., Courtois, N.: C\(^*_{-+}\) and HM: Variations Around Two Schemes of T. Matsumoto and H. Imai. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS, vol. 1514, pp. 35–49. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  39. 39.
    Patarin, J., Courtois, N., Goubin, L.: FLASH, a Fast Multivariate Signature Algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307. Springer, Heidelberg (2001), Updated version available at: http://www.cryptonessie.org CrossRefGoogle Scholar
  40. 40.
    Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Goldwasser, S. (ed.) Proc. 35nd Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)CrossRefGoogle Scholar
  41. 41.
    Wolf, C., Preneel, B.: Taxonomy of Public-Key Schemes based on the Problem of Multivariate Quadratic Equations (2005), http://eprint.iacr.org/2005/077
  42. 42.
    Wolf, C., Preneel, B.: Equivalent Keys in HFE, C*, and variations. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 33–49. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  43. 43.
    Yang, B.-Y., Chen, J.-M.: Rank Attacks and Defence in Tame-Like Multivariate PKC’s. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  44. 44.
    Yang, B.-Y., Chen, Y.-H., Chen, J.-M.: TTS: High-Speed Signatures on a Low-Cost Smart Card. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 371–385. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  45. 45.
    Yang, B.-Y., Cheng, C.-M., Chen, B.-R., Chen, J.-M.: Technical Research Report Number 11, Taiwan Information Security Center (TWISC) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bo-Yin Yang
    • 1
  • Chen-Mou Cheng
    • 2
  • Bor-Rong Chen
    • 2
  • Jiun-Ming Chen
    • 3
  1. 1.Dept. of Math.Tamkang UniversityTamsuiTaiwan
  2. 2.Harvard UniversityUSA
  3. 3.Chinese Data Security, Inc., and Nat’l Taiwan U.TaipeiTaiwan

Personalised recommendations