Advertisement

Modeling Multimedia Data Semantics with MADS

  • Oleksandr Drutskyy
  • Stefano Spaccapietra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3882)

Abstract

To bridge the gap between the over increasing ubiquity of multimedia and the lack of approaches to deal with semantics of multimedia information, an important number of research efforts has been brought out lately. Nevertheless, a vast majority of proposed techniques deal with movies or other montage-edited media sources like TV-news, football matches, etc., which are characterized by efficient temporal granularity (frames, shots, scenes, etc.). Unfortunately, this latter property does not hold in environments like, e.g, multimedia meetings, making traditional approaches not quite suitable for such settings. In this paper we present our approach to conceptual modeling of multimedia data based on MADS, a spatio-temporal data model with multi-representation support. We also provide an example for the case of multimedia meetings.

Keywords

Object Type Multimedia Data Relationship Type Meeting Participant Modeling Multimedia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Parent, C., Spaccapietra, S., Zimanyi, E.: The MurMur Project: Modeling and Querying Multi-Representation Spatio-Temporal Databases. In: Information Systems, Elsevier, Amsterdam (2005)Google Scholar
  2. 2.
    Smith, J.: MPEG-7 Multimedia Content Description Standard. In: Feng, D., Siu, W.C., Zhang, H.J. (eds.) Multimedia Information Retrieval and Management,, pp. 121–147. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Zillner, S., Westermann, U., Winiwarter, W.: EMMA - A Query Algebra for Enhanced Multimedia Meta Objects. In: proceedings of ODBASE 2004, Agia Napa, Cyprus, October 25-29, 2004, Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Aberer, K., et al.: Emergent Semantics Principles and Issues. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 25–38. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Altman, E., Wyse, L.: Emergent Semantics from Media Blending. In: Srinivasan, U., Nepal, S. (eds.) Managing Multimdeia Semantics, pp. 351–362. IRM Press (2005)Google Scholar
  6. 6.
    Bounif, H., Drutskyy, O., Jouanot, F., Spaccapietra, S.: A Multimodal Database Framework for Multimedia Meeting Annotations. In: proceedings of the 10th International Multi-Media Modeling Conference, MMM 2004, IEEE Press, Brisbane, Australia (2004)Google Scholar
  7. 7.
    Vendrig, J., Worring, M.: Interactive Adaptive Movie Annotation. IEEE MultiMedia 10(3), 30–37 (2003)CrossRefGoogle Scholar
  8. 8.
    Davis, M.: Media Streams: An Iconic Visual Language for Video Representation. In: Ronald, M., Baecker, J., Grudin, W.A.S., Buxton, S. (eds.) Readings in Human-Computer Interaction: Toward the Year 2000, 2nd edn., pp. 854–866. Morgan Kaufmann, San Francisco (1995)Google Scholar
  9. 9.
    Parent, C., Spaccapietra, S., Zimanyi, E.: Spatio-Temporal Conceptual Models: Data Structures + Space + Time. In: Proceedings of the 7th ACM Symposium on Advances in GIS, Kansas City, Kansas, November 5-6 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Oleksandr Drutskyy
    • 1
  • Stefano Spaccapietra
    • 1
  1. 1.School of Computer and Communication Sciences, Database LaboratoryEPFL – Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations