In-Network Processing of Nearest Neighbor Queries for Wireless Sensor Networks

  • Yuxia Yao
  • Xueyan Tang
  • Ee-Peng Lim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3882)


Wireless sensor networks have been widely used for civilian and military applications, such as environmental monitoring and vehicle tracking. The sensor nodes in the network have the abilities to sense, store, compute and communicate. To enable object tracking applications, spatial queries such as nearest neighbor queries are to be supported in these networks. The queries can be injected by the user at any sensor node. Due to the limited power supply for sensor nodes, energy efficiency is the major concern in query processing. Centralized data storage and query processing schemes do not favor energy efficiency. In this paper, we propose a distributed scheme called DNN for in-network processing of nearest neighbor queries. A cost model is built to analyze the performance of DNN. Experimental results show that DNN outperforms the centralized scheme significantly in terms of energy consumption and network lifetime.


Sensor Network Sensor Node Grid Cell Wireless Sensor Network Query Processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pottie, G.: Wireless integrated network sensors. Communications of the ACM 43, 51–58 (2000)CrossRefGoogle Scholar
  2. 2.
    Bonnet, P., Gehrke, J., Seshadri, P.: Towards sensor database systems. In: MDM 2001, pp. 3–14 (2001)Google Scholar
  3. 3.
    Govindan, R., Hellerstein, J., Hong, W., Madden, S., Franklin, M.: Shenker, S.: The sensor network as a database. Technical Report 02-771, Computer Science Department, University of Southern California (2002)Google Scholar
  4. 4.
    Tang, X., Xu, J.: Extending network lifetime for precision-constrained data aggregation in wireless sensor networks. In: Proceedings of IEEE INFOCOM 2006, Barcelona, Spain (Accepted to appear, 2006)Google Scholar
  5. 5.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Communication Magazine 40, 102–114 (2002)CrossRefGoogle Scholar
  6. 6.
    Intanagonwiwa, c., Govindan, R., Estrin, D.: Directed diffusion: A scalable and robust communication paradigm for sensor networks. In: Proceedings of the 6th Annual ACM/IEEE Mobicom 2000, Boston, MA, USA (2000)Google Scholar
  7. 7.
    Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional query processor for sensor networks. In: Proceedings of ACM SIGMOD 2003, San Diego, CA, US (2003)Google Scholar
  8. 8.
    Chowdhary, N., Gupta, H.: Communication-efficient implementation of join in sensor networks. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Sharaf, M., Beaver, J., Labrinidis, A., Chrysanthis, P.: TiNA: A scheme for temporal coherency-aware in-network aggregation. In: Proceedings of the 3rd International ACM Workshop on Data Engineering for Wireless and Mobile Access, San Diego, CA, USA, pp. 69–76 (2003)Google Scholar
  10. 10.
    Yao, Y., Gehrke, J.: Query processing for sensor networks. In: Proceedings of the 1st Conference on Innovative Data System Research, Asilomar (2003)Google Scholar
  11. 11.
    Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: Proceedings of ACM SIGMOD 1995, San Jose, CA, USA (1995)Google Scholar
  12. 12.
    Demirbas, M., Ferhatosmanoglus, H.: Peer-to-peer spatial queries in sensor networks. In: Proceedings of the 3rd IEEE International Conference on Peer-to-Peer Computing, Linkoping, Sweden (2003)Google Scholar
  13. 13.
    Winter, J., Lee, W.-C.: KPT: A dynamic KNN query processing algorithm for location-aware sensor networks. In: The 1st VLDB Workshop DMSN 2004, Toronto, Canada (2004)Google Scholar
  14. 14.
    Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Proceedings of SIGMOD 1984, Boston, Massachusetts (1984)Google Scholar
  15. 15.
    Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.: Indexing the positions of continuously moving objects. In: Proceedings of the ACM SIGMOD 2001, Santa Barbara, CA, USA (2001)Google Scholar
  16. 16.
    Tao, Y., Papadias, D., Shen, A.: Continuous nearest neighbor search. In: Bressan, S., Chaudhri, A.B., Li Lee, M., Yu, J.X., Lacroix, Z. (eds.) CAiSE 2002 and VLDB 2002. LNCS, vol. 2590, Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Wellenhof, B.H., Lichtenegger, H., Collins, J.: Gps theory and practice, 2nd edn. Springer, New YorkGoogle Scholar
  18. 18.
    Niculescu, D., Nathi, B.: Ad hoc positioning system. In: Proceedings of INFOCOM 2003, San Francisco, CA (2003)Google Scholar
  19. 19.
    Li, D., Wong, K., Hu, Y., Sayeed, A.: Detection, classification and tracking of targets in distributed sensor networks. IEEE Signal Processing Magazine 19 (2002)Google Scholar
  20. 20.
    Xu, J., Tang, X., Lee, W.-C.: Ease: An energy-efficient in-network storage scheme for object tracking in sensor networks. In: Proceedings of IEEE SECON 2005, Santa Clara, CA, USA (2005)Google Scholar
  21. 21.
    Xu, Y., Winter, J., Lee, W.-C.: Prediction-based strategies for energy saving in object tracking sensor networks. In: Proceedings of IEEE MDM 2004, Berkeley, CA, USA (2004)Google Scholar
  22. 22.
    Karp, B., Kung, H.: GPSR: Greey perimeter stateless routing for wireless networks. In: Proceedings of the 6th Annual ACM/IEEE Mobicom 2000, Boston, MA, USA (2000)Google Scholar
  23. 23.
    Weisstein, E.: Hypercube line picking. MathWorld,
  24. 24.
    Buragohain, C., Agrawal, D., Suri, S.: Power aware routing for sensor databases. In: Proceedings of IEEE INFOCOM 2005 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yuxia Yao
    • 1
  • Xueyan Tang
    • 1
  • Ee-Peng Lim
    • 1
  1. 1.School of Computer EngineeringNanyang Technological UniversitySingapore

Personalised recommendations