Adaptively Indexing Dynamic XML

  • Damien K. Fisher
  • Raymond K. Wong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3882)


It is difficult to index XML in practice, as there is a great deal of structure that can be included in an index. Using feedback from the database user’s queries can assist the indexer by highlighting the exact structure in which the user is interested. In this paper, adaptive index structure for XML documents is presented which captures the structure given by branching path expressions, a very important class of queries. By leveraging existing infrastructure, the structure can handle updates both to the underlying data, and to itself, with little additional cost.


Graph Synopsis Index Size Query Performance Ancestor Node Path Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Khalifa, S., et al.: Structural joins: A primitive for efficient XML query pattern matching. In: ICDE 2002, pp. 141–154 (2002)Google Scholar
  2. 2.
    Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal XML pattern matching. In: SIGMOD 2002, pp. 310–321. ACM, New York (2002)Google Scholar
  3. 3.
    Chung, C.-W., Min, J.-K., Shim, K.: APEX: an adaptive path index for XML data. In: CAiSE 2002 and VLDB 2002, pp. 121–132. Morgan Kaufmann, San Francisco (2002)Google Scholar
  4. 4.
    Goldman, R., Widom, J.: DataGuides: Enabling query formulation and optimization in semistructured databases. In: VLDB 1997, pp. 436–445. Morgan Kaufmann, San Francisco (1997)Google Scholar
  5. 5.
    He, H., Yang, J.: Multiresolution indexing of XML for frequent queries. In: ICDE 2004, pp. 683–694. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  6. 6.
    Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for branching path queries. In: SIGMOD 2002, pp. 133–144. ACM, New York (2002)Google Scholar
  7. 7.
    Kaushik, R., Bohannon, P., Naughton, J.F., Shenoy, P.: Updates for structure indexes. In: CAiSE 2002 and VLDB 2002, pp. 239–250. Morgan Kaufmann, San Francisco (2002)Google Scholar
  8. 8.
    Kaushik, R., Shenoy, P., Bohannon, P., Gudes, E.: Exploiting local similarity for indexing paths in graph-structured data. In: ICDE, pp. 129–140. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  9. 9.
    Milo, T., Suciu, D.: Index structures for path expressions. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 277–295. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Polyzotis, N., Garofalakis, M.N.: Statistical synopses for graph-structured XML databases. In: SIGMOD 2002, pp. 358–369. ACM, New York (2002)Google Scholar
  11. 11.
    Qun, C., Lim, A., Ong, K.W.: D(k)-Index: An adaptive structural summary for graph-structured data. In: SIGMOD, pp. 134–144. ACM, New York (2003)Google Scholar
  12. 12.
    Silberstein, A., He, H., Yi, K., Yang, J.: BOXes: Efficient maintenance of order-based labeling for dynamic XML data. In: ICDE, pp. 285–296 (2005)Google Scholar
  13. 13.
    Yi, K., He, H., Stanoi, I., Yang, J.: Incremental maintenance of XML structural indexes. In: SIGMOD 2004, pp. 491–502. ACM, New York (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Damien K. Fisher
    • 1
  • Raymond K. Wong
    • 1
  1. 1.National ICT Australia Ltd, and School of Computer Science and EngineeringUniversity of New South WalesAustralia

Personalised recommendations