Mining Outliers in Spatial Networks

  • Wen Jin
  • Yuelong Jiang
  • Weining Qian
  • Anthony K. H. Tung
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3882)


Outlier analysis is an important task in data mining and has attracted much attention in both research and applications. Previous work on outlier detection involves different types of databases such as spatial databases, time series databases, biomedical databases, etc. However, few of the existing studies have considered spatial networks where points reside on every edge. In this paper, we study the interesting problem of distance-based outliers in spatial networks. We propose an efficient mining method which partitions each edge of a spatial network into a set of length d segments, then quickly identifies the outliers in the remaining edges after pruning those unnecessary edges which cannot contain outliers. We also present algorithms that can be applied when the spatial network is updating points or the input parameters of outlier measures are changed. The experimental results verify the scalability and efficiency of our proposed methods.


Outlier Segment Outlier Detection Mining Algorithm Spatial Database Local Outlier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, C., Yu, P.: Outlier detection for high dimensional data. In: SIGMOD (2001)Google Scholar
  2. 2.
    Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: Identifying Density-Based Local Outliers. In: SIGMOD (2000)Google Scholar
  3. 3.
    Barnett, V., Lewis, T.: Outliers in Statistical Data. John Wiley & Sons, Chichester (1994)MATHGoogle Scholar
  4. 4.
    Chakrabarti, D.: AutoPart: Parameter-Free Graph Partitioning and Outlier Detection. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, Springer, Heidelberg (2004)Google Scholar
  5. 5.
    Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases. In: KDD (1996)Google Scholar
  6. 6.
    Guha, S., Rastogi, R., Shim, K.: Cure: An efficient clustering algorithm for large databases. In: SIGMOD (1998)Google Scholar
  7. 7.
    Hawkins, D.: Identification of Outliers. Chapman and Hall, London (1980)CrossRefMATHGoogle Scholar
  8. 8.
    Hautamki, V., Krkkinen, I., Frnti, P.: Outlier detection using k-nearest neighbour graph. In: ICPR (2004)Google Scholar
  9. 9.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers, San FranciscoGoogle Scholar
  10. 10.
    Jagadish, H., Koudas, N., Muthukrishnan, S.: Mining deviants in a time series database. In: VLDB 1999 (1999)Google Scholar
  11. 11.
    Jin, W., Tung, A.K.H., Han, J.W.: Mining Top-n Local Outliers in Large Databases. In: KDD (2001)Google Scholar
  12. 12.
    Edwin, M., Knorr, R.T.: Ng: Algorithms for Mining Distance-Based Outliers in Large Datasets. In: VLDB (1998)Google Scholar
  13. 13.
    Knorr, E., Ng, R.: Finding Intensional Knowledge of Distance-Based Outliers. In: VLDB (1999)Google Scholar
  14. 14.
    Muthukrishnan, S.: Rahul Shah, Jeffrey Scott Vitter: Mining Deviants in Time Series Data Streams. In: SSDBM (2004)Google Scholar
  15. 15.
    Ng, R., Han, J.: Efficient and effective clustering method for spatial data mining. In: VLDB (1994)Google Scholar
  16. 16.
    Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: LOCI: Fast Outlier Detection Using the Local Correlation Integral. In: ICDE (2003)Google Scholar
  17. 17.
    Papadimitriou, S., Faloutsos, C.: Cross-Outlier Detection. In: Hadzilacos, T., Manolopoulos, Y., Roddick, J.F., Theodoridis, Y. (eds.) SSTD 2003. LNCS, vol. 2750, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. In: SIGMOD (1995)Google Scholar
  19. 19.
    Ramaswamy, S., Rastogi, R., Shim, K.: Efficient Algorithms for Mining Outliers from Large Data Sets. In: SIGMOD (2000)Google Scholar
  20. 20.
    Shekhar, S., Lu, C.-T., Zhang, P.: Detecting graph-based spatial outliers: algorithms and applications (a summary of results). In: KDD (2001)Google Scholar
  21. 21.
    Sander, J., Ng, R.T., Sleumer, M.C., Yuen, M.S., Jones, S.J.: A methodology for analyzing SAGE libraries for cancer profiling. ACM Trans. Inf. Syst. 23(1), 35–60 (2005)CrossRefGoogle Scholar
  22. 22.
    Wong, W.-K., Moore, A.W., Cooper, G.F., Wagner, M.: Rule-Based Anomaly Pattern Detection for Detecting Disease Outbreaks. In: AAAI (2002)Google Scholar
  23. 23.
    Yiu, M.L., Mamoulis, N.: Clustering Objects on a Spatial Network. In: SIGMOD (2004)Google Scholar
  24. 24.
    Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate Nearest Neighbor Queries in Road Networks. IEEE Trans. Knowl. Data Eng 17(6), 820–833 (2005)CrossRefGoogle Scholar
  25. 25.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: SIGMOD (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Wen Jin
    • 1
  • Yuelong Jiang
    • 1
  • Weining Qian
    • 2
  • Anthony K. H. Tung
    • 3
  1. 1.School of Computing ScienceSimon Fraser UniversityCanada
  2. 2.Department of Computer ScienceFudan UniversityChina
  3. 3.Department of Computer ScienceNational University of SingaporeSingapore

Personalised recommendations