Implementing Cryptography on TFT Technology for Secure Display Applications

  • Petros Oikonomakos
  • Jacques Fournier
  • Simon Moore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3928)


Several recent studies have underlined the need for trusted information displays in current and future personal devices. On the other hand, the display market is more and more dominated by low-cost flat-panel structures, driven by Thin-Film Transistor (TFT) circuits. Further, the quality of TFT-based electronics is constantly improving, allowing the fabrication of complicated electronic circuits on TFT technology. We have embarked on a project to implement cryptographic algorithms on polysilicon TFT technology. Our prototype designs will pave the way for secure display realisations combining cryptographic circuits and conventional pixel drivers on the same substrate. An experimental Data Encryption Standard (DES) coprocessor on polysilicon TFT technology is under development, while we are investigating a vector processor architecture to implement Elliptic Curve Cryptography (ECC).


Advance Encryption Standard Elliptic Curve Cryptography Digital Right Management Data Encryption Standard Programmable Logic Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yee, B., Tygar, J.D.: Secure Coprocessors in Electronic Commerce Applications. In: Proceedings of the 1st USENIX Workshop on Electronic Commerce, pp. 155–170 (July 1995)Google Scholar
  2. 2.
    Hiltgen, A., Kramp, T., Weigold, T.: Secure Internet Banking Authentication. IEEE Security & Privacy (accepted for publication), available online at,
  3. 3.
    Offer, G.: Method and Apparatus for Performing a Cashless Payment Transaction. United States Patent Application #20,020,161,708Google Scholar
  4. 4.
    Stewart, M., Howell, R.S., Pires, L., Hatalis, M.K.: Polysilicon TFT Technology for Active Matrix OLED Displays. IEEE Transactions on Electron Devices 48(5), 845–851 (2001)CrossRefGoogle Scholar
  5. 5.
    Nathan, A., et al.: Amorphous Silicon Thin Film Transistor Circuit Intergration for Organic LED Displays on Glass and Plastic. IEEE Journal of Solid-State Circuits 39(9), 1477–1486 (2004)CrossRefGoogle Scholar
  6. 6.
    Sharp Microelectronics of the Americas website,
  7. 7.
    Karaki, N., et al.: A Flexible 8b Asynchronous Microprocessor based on Low-Temperature Poly-Silicon TFT Technology. In: Digest of Technical Papers of the 52nd IEEE International Solid-State Circuit Conference (ISSCC) (2005)Google Scholar
  8. 8.
    Lee, B., et al.: A CPU on a Glass Substrate Using CG-Silicon TFTs. In: Digest of Technical Papers of the 50th IEEE International Solid-State Circuit Conference (ISSCC) (2003)Google Scholar
  9. 9.
    FINREAD Specification, FINREAD Consortium,
  10. 10.
    Hortmann, M.: Tutorial on E-Voting. EURESCOM mess@ge (issue3), p. 22 (2001), available online at,
  11. 11.
    Open Mobile Alliance (OMA): DRM Specification V2.0 Candidate Version 2.0, April 26 (2005), available online at
  12. 12.
    He, Y., Hattori, R., Kanicki, J.: Current-Source a-Si:H Thin-Film Transistor Circuit for Active-Matrix Organic Light-Emitting Displays. IEEE Electron Device Letters 21(12), 590–592 (2000)CrossRefGoogle Scholar
  13. 13.
    Hashido, R., et al.: A Capacitive Fingerprint Sensor Chip Using Low-Temperature Poly–Si TFTs on Glass Substrate and a Novel and Unique Sensing Method. IEEE Journal of Solid-State Circuits 38(2), 274–280 (2003)CrossRefGoogle Scholar
  14. 14.
    Estrela, P., Stewart, A.G., Yan, F., Migliorato, P.: Field Effect Detection of Biomolecular Interactions. Electrochimica Acta 50, 4995–5000 (2005)CrossRefGoogle Scholar
  15. 15.
    US Department of Commerce, National Institute of Standards and Technology: Data Encryption Standard (DES). Federal Information Processing Standards Publication, 46-3 (October 1999)Google Scholar
  16. 16.
    Batina, L., Berna Örs, S., Preneel, B., Vandewalle, J.: Hardware Architectures for Public Key Cryptography. Integration. The VLSI Journal 34, 1–64 (2003)CrossRefGoogle Scholar
  17. 17.
    Asanović, K.: Vector Microprocessors. PhD Thesis, University of California Berkeley (1998)Google Scholar
  18. 18.
    Electronic Frontier Foundation: Cracking DES. Secrets of Encryption Research,Wiretap Politics & Chip Design (July 1998)Google Scholar
  19. 19.
    Lilja, D.J., Sapatnekar, S.S.: Designing Digital Computer Systems with Verilog. Cambridge University Press, Cambridge (2004)CrossRefGoogle Scholar
  20. 20.
    Fournier, J., Moore, S.: A Vectorial Approach to Cryptography Implementation. In: Proceedings of the 1st International Conference on Digital Rights Management:Technology, Issues, Challenges and Systems (November 2005)Google Scholar
  21. 21.
    MIPS Technologies: MIPS Architecture for Programmers Volume II: The MIPS32Instruction Set. Technical Report MD00086, Revision 0.95 (March 2001)Google Scholar
  22. 22.
    Montgomery, P.: Modular Multiplication without Trial Division. Mathematics of Computation 44, 519–521 (1985)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Folegnani, D., González, A.: Energy Effective Issue Logic. In: Proceedings of the 28th Annual International Symposium on Computer Architecture, pp. 230–239 (June-July 2001)Google Scholar
  24. 24.
    T.A. Team: The ArchC Architecture Description Language – Reference Manual.Technical Report v.1.2, University of Campinas (December 2004) Google Scholar
  25. 25.
    US Department of Commerce, National Institute of Standards and Technology: Advanced Encryption Standard (AES). Federal Information Processing Standards Publication, 197 (November 2001)Google Scholar
  26. 26.
    Posluszny, S., et al.: Timing Closure by Design, A High Frequency MicroprocessorDesign Methodology. In: Proceedings of the 37th ACM/IEEE Design AutomationConference, pp. 712–717 (June 2000)Google Scholar
  27. 27.
    Wang, J.S., Chang, C.R., Yeh, C.: Analysis and Design of High-Speed and Low-Power CMOS PLAs. IEEE Journal of Solid-State Circuits 36(8), 1250–1262 (2001)CrossRefGoogle Scholar
  28. 28.
    Li, H., Markettos, A.T., Moore, S.: Security Evaluation Against Electromagnetic Analysis at Design Time. In: Proceedings of the 7th International Workshop on Cryptographic Hardware and Embedded Systems, pp. 280–292 (August-September 2005)Google Scholar
  29. 29.
    Sparsø, J., Furber, S.: Principles of Asynchronous Circuit Design: A Systems Perspective. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  30. 30.
    Static Free Software: Using the Electric VLSI Design System, available online at,

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • Petros Oikonomakos
    • 1
  • Jacques Fournier
    • 1
    • 2
  • Simon Moore
    • 1
  1. 1.Computer LaboratoryUniversity of CambridgeCambridgeUK
  2. 2.GEMPLUS, La VigieLa CiotatFrance

Personalised recommendations