Advertisement

SEA: A Scalable Encryption Algorithm for Small Embedded Applications

  • François-Xavier Standaert
  • Gilles Piret
  • Neil Gershenfeld
  • Jean-Jacques Quisquater
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3928)

Abstract

Most present symmetric encryption algorithms result from a tradeoff between implementation cost and resulting performances. In addition, they generally aim to be implemented efficiently on a large variety of platforms. In this paper, we take an opposite approach and consider a context where we have very limited processing resources and throughput requirements. For this purpose, we propose low-cost encryption routines (i.e. with small code size and memory) targeted for processors with a limited instruction set (i.e. AND, OR, XOR gates, word rotation and modular addition). The proposed design is parametric in the text, key and processor size, allows efficient combination of encryption/decryption, “on-the-fly” key derivation and its security against a number of recent cryptanalytic techniques is discussed. Target applications for such routines include any context requiring low-cost encryption and/or authentication.

Keywords

Block Cipher Advance Encryption Standard Code Size Algebraic Attack Linear Cryptanalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anderson, R., Biham, E., Knudsen, L.: Serpent: A Flexible Block Cipher With Maximum Assurance. In: The proceedings of The First Advanced Encryption Standard Candidate Conference, Ventura, California, USA (August 1998)Google Scholar
  2. 2.
    ARM, 32-bit RISC microprocessors, http://www.arm.com/products/CPUs/
  3. 3.
    Atmel, AVR 8-Bit RISC, http://www.atmel.com/products/AVR/
  4. 4.
    Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard. Springer, Heidelberg (1993)CrossRefMATHGoogle Scholar
  5. 5.
    Biham, E.: New types of cryptanalytic attacks using related keys. Journal of Cryptology 7(4), 229–246 (1994)CrossRefMATHGoogle Scholar
  6. 6.
    Biham, E., Biryukov, A., Shamir, A.: Miss in the middle attacks on IDEA and khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31 Rounds using Impossible Differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack, Rectangling the Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Biryukov, A., De Canniére, C.: Block Ciphers and Systems of Quadratic Equations. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 274–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Biryukov, A., De Canniére, C., Quisquater, M.: On Multiple Linear Approximations. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 1–22. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Biryukov, A., Wagner, D.: Slide attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 245–259. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Courtois, N.: Feistel Schemes and Bi-linear Cryptanalysis. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 23–40. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Daemen, J., Govaerts, R., Vandewalle, J.: A New Approach Towards Block Cipher Design. In: Anderson, R. (ed.) FSE 1993. LNCS, vol. 809, pp. 18–32. Springer, Heidelberg (1994)Google Scholar
  16. 16.
    Daemen, J., Knudsen, L., Rijmen, V.: The Block Cipher SQUARE. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  17. 17.
    Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2001)MATHGoogle Scholar
  18. 18.
    FIPS 197, Advanced Encryption Standard, Federal Information Processing Standard, NIST, U.S. Dept. of Commerce, November 26 (2001) Google Scholar
  19. 19.
    Hachez, G., Koeune, F., Quisquater, J.-J.: cAESar Results: Implementation of Four AES Candidates on Two Smart Cards. In: The proceedings of the Second Advanced Encryption Standard Candidate Conference, Rome, Italy, pp. 95–108 (March 1999)Google Scholar
  20. 20.
    Gershenfeld, N., Krikorian, R., Cohen, D.: The Internet of Things, pp. 76–81. Scientific American (October 2004)Google Scholar
  21. 21.
    Jakobsen, T., Knudsen, L.R.: The Interpolation Attack on Block Ciphers. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 28–40. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Kaliski, B.S., Robshaw, M.J.B.: Linear Cryptanalysis using Multiple Approximations. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 26–39. Springer, Heidelberg (1994)Google Scholar
  23. 23.
    Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptanalysis of IDEA, G-DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 237–251. Springer, Heidelberg (1996)Google Scholar
  24. 24.
    Kelsey, J., Schneier, B., Wagner, D.: Related-Key Cryptanalysis of 3-WAY, Biham- DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  25. 25.
    Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  26. 26.
    Knudsen, L.R., Robshaw, M.J.B.: Non-Linear Approximations in Linear Cryptanalysis. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 224–236. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  27. 27.
    Langford, S., Hellman, M.: Differential-Linear Cryptanalysis. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)Google Scholar
  28. 28.
    Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  29. 29.
    Matsui, M.: Supporting Document of MISTY1, the NESSIE project (submission to), available from http://www.cosic.esat.kuleuven.ac.be/nessie/
  30. 30.
    Standaert, F.-X., Piret, G., Rouvroy, G., Quisquater, J.-J., Legat, J.-D.: ICEBERG: an Involutional Cipher Efficient for Block Encryption in Reconfigurable Hardware. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 279–299. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  32. 32.
    Wheeler, D.J., Needham, R.: TEA, a Tiny Encryption Algorithm. In: Preneel, B. (ed.) FSE 1994. LNCS, vol. 1008, pp. 363–366. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  33. 33.
    Yuval, G.: Reinventing the Travois: Encryption/MAC in 30 ROM Bytes. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 205–209. Springer, Heidelberg (1997)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2006

Authors and Affiliations

  • François-Xavier Standaert
    • 1
    • 3
  • Gilles Piret
    • 2
  • Neil Gershenfeld
    • 3
  • Jean-Jacques Quisquater
    • 1
  1. 1.UCL Crypto Group, Laboratoire de MicroélectroniqueUniversité Catholique de LouvainLouvain-La-NeuveBelgium
  2. 2.Département d’InformatiqueEcole Normale SupérieureParisFrance
  3. 3.Center for Bits and Atoms, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations