Advertisement

A Patient-Gene Model for Temporal Expression Profiles in Clinical Studies

  • Naftali Kaminski
  • Ziv Bar-Joseph
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3909)

Abstract

Pharmacogenomics and clinical studies that measure the temporal expression levels of patients can identify important pathways and biomarkers that are activated during disease progression or in response to treatment. However, researchers face a number of challenges when trying to combine expression profiles from these patients. Unlike studies that rely on lab animals or cell lines, individuals vary in their baseline expression and in their response rate. In this paper we present a generative model for such data. Our model represents patient expression data using two levels, a gene level which corresponds to a common response pattern and a patient level which accounts for the patient specific expression patterns and response rate. Using an EM algorithm we infer the parameters of the model. We used our algorithm to analyze multiple sclerosis patient response to Interferon-β. As we show, our algorithm was able to improve upon prior methods for combining patients data. In addition, our algorithm was able to correctly identify patient specific response patterns.

Keywords

Gene Ontology Multiple Sclerosis Patient Common Response Yeast Cell Cycle Subharmonic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., et al.: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisia by microarray hybridization. Mol. Biol. of the Cell. 9, 3273–3297 (1998)Google Scholar
  2. 2.
    Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., et al.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell. 13(6), 1977–2000 (2002)CrossRefGoogle Scholar
  3. 3.
    Inflammation and the Host Response to Injury, www.gluegrant.org
  4. 4.
    Bar-Joseph, Z.: Analyzing time series gene expression data. Bioinformatics 20(16), 2493–2503 (2004)CrossRefGoogle Scholar
  5. 5.
    Nau, G.J., Richmond, J.F.L., Schlesinger, A., Jennings, E.G., et al.: Human Macrophage Activation Programs Induced by Bacterial Pathogens. PNAS 99, 1503–1508 (2002)CrossRefGoogle Scholar
  6. 6.
    Weinstock-Guttman, B., Badgett, D., Patrick, K., Hartrich, L., et al.: Genomic effects of IFN-beta in multiple sclerosis patients. J. Immunol. 171(5), 1503–1508 (2002)Google Scholar
  7. 7.
    Sterrenburg, E., Turk, R., Peter, A.C., Hoen, P.A., van Deutekom, J.C., et al.: Large-scale gene expression analysis of human skeletal myoblast differentiation. Neuromuscul Disord. 14(8-9), 507–518 (2004)CrossRefGoogle Scholar
  8. 8.
    Aach, J., Church, G.M.: Aligning gene expression time series with time warping algorithms. Bioinformatics 17, 495–508 (2001)CrossRefGoogle Scholar
  9. 9.
    Bar-Joseph, Z., Gerber, G., Jaakkola, T.S., Gifford, D.K., Simon, I.: Continuous Representations of Time Series Gene Expression Data. Journal of Computational Biology 3-4, 39–48 (2003)Google Scholar
  10. 10.
    Calvano, S.E., Xiao, W., Richards, D.R., Felciano, R.M., et al.: A network-based analysis of systemic inflammation in humans. Nature 437, 1032–1037 (2005)CrossRefGoogle Scholar
  11. 11.
    Gaffney, S., Smyth, P.: Joint Probabilistic Curve Clustering and Alignmen. In: Proceedings of The Eighteenth Annual Conference on Neural Information Processing Systems (NIPS) (2004)Google Scholar
  12. 12.
    Bar-Joseph, Z., Gerber, G., Jaakkola, T.S., Gifford, D.K., Simon, I.: Comparing the Continuous Representation of Time Series Expression Profiles to Identify Differentially Expressed Genes. PNAS 100(18), 10146–10151 (2003)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Storey, J.D., Xiao, W., Leek, J.T., Tompkins, R.G., Davis, R.W.: Significance analysis of time course microarray experiments. PNAS 102(36), 12837–12842 (2005)CrossRefGoogle Scholar
  14. 14.
    Michalek, R., Tarantello, G.: Subharmonic solutions with prescribed minimal period for nonautonomous Hamiltonian systems. J. Diff. Eq. 72, 28–55 (1988)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Tarantello, G.: Subharmonic solutions for Hamiltonian systems via a ZZ p pseudoindex theory. Annali di Matematica Pura (to appear)Google Scholar
  16. 16.
    Troyanskaya, O., Cantor, M., et al.: Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001)CrossRefGoogle Scholar
  17. 17.
    Sharan, R., Shamir, R.: Algorithmic Approaches to Clustering Gene Expression Data. Current Topics in Computational Biology, 269–300 (2002)Google Scholar
  18. 18.
    Piegl, L., Tiller, W.: The NURBS Book. Springer, New York (1997)Google Scholar
  19. 19.
    James, G., Hastie, T.: Functional Linear Discriminant Analysis for Irregularly Sampled Curves. Journal of the Royal Statistical Society, Series B 63, 533–550 (2001)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Xing, E.P., Jordan, M.I., Russell, S.: A generalized mean field algorithm for variational inference in exponential families. In: Proceedings of Uncertainty in Artificial Intelligence (UAI), pp. 583–591 (2003)Google Scholar
  21. 21.
  22. 22.
    Achiron, A., et al.: Blood transcriptional signatures of multiple sclerosis: unique gene expression of disease activity. Ann. Neurol. 55(3), 410–417 (2004)CrossRefGoogle Scholar
  23. 23.
    Takeba, Y., et al.: Txk, a member of nonreceptor tyrosine kinase of Tec family, acts as a Th1 cell-specific transcription factor and regulates IFN-gamma gene transcription. J. Immunol. 168(5), 2365–2370 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Naftali Kaminski
    • 1
  • Ziv Bar-Joseph
    • 2
  1. 1.Simmons Center for Interstitial Lung DiseaseUniversity of Pittsburgh Medical SchoolPittsburghUSA
  2. 2.School of Computer Science and Department of BiologyCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations