Advertisement

Sorting by Weighted Reversals, Transpositions, and Inverted Transpositions

  • Martin Bader
  • Enno Ohlebusch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3909)

Abstract

During evolution, genomes are subject to genome rearrangements that alter the ordering and orientation of genes on the chromosomes. If a genome consists of a single chromosome (like mitochondrial, chloroplast or bacterial genomes), the biologically relevant genome rearrangements are (1) inversions—also called reversals—where a section of the genome is excised, reversed in orientation, and reinserted and (2) transpositions, where a section of the genome is excised and reinserted at a new position in the genome; if this also involves an inversion, one speaks of an inverted transposition. To reconstruct ancient events in the evolutionary history of organisms, one is interested in finding an optimal sequence of genome rearrangements that transforms a given genome into another genome. It is well known that this problem is equivalent to the problem of “sorting” a signed permutation into the identity permutation. The complexity of the problem is still unknown. The best polynomial-time approximation algorithm, recently devised by Hartman and Sharan, has a 1.5 performance ratio. However, it applies only to the case in which reversals and transpositions are weighted equally. Because in most organisms reversals occur more often than transpositions, it is desirable to have the possibility of weighting reversals and transpositions differently. In this paper, we provide a 1.5-approximation algorithm for sorting by weighted reversals, transpositions and inverted transpositions for biologically realistic weights.

Keywords

Genome Rearrangement Identity Permutation Signed Permutation Breakpoint Graph Sorting Sequence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distance between signed permutations with an experimental study. Journal of Computational Biology 8, 483–491 (2001)CrossRefGoogle Scholar
  2. 2.
    Bader, M.: Sorting by weighted transpositions and reversals. Master’s thesis, University of Ulm (December 2005)Google Scholar
  3. 3.
    Bafna, V., Pevzner, P.A.: Genome rearrangements and sorting by reversals. SIAM Journal on Computing 25(2), 272–289 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bafna, V., Pevzner, P.A.: Sorting by transpositions. SIAM Journal on Discrete Mathematics 11(2), 224–240 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bergeron, A.: A very elementary presentation of the Hannenhalli-Pevzner theory. Discrete Applied Mathematics 146(2), 134–145 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bergeron, A., Mixtacki, J., Stoye, J.: Reversal distance without hurdles and fortresses. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 388–399. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Berman, P., Hannenhalli, S., Karpinski, M.: 1.375-approximation algorithm for sorting by reversals. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 200–210. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Blanchette, M., Kunisawa, T., Sankoff, D.: Parametric genome rearrangement. Gene. 17, GC11–17 (1996)Google Scholar
  9. 9.
    Caprara, A.: Sorting permutations by reversals and Eulerian cycle decompositions. Journal on Discrete Mathematics 12, 91–110 (1999)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Elias, I., Hartman, T.: A 1.375-approximation algorithm for sorting by transpositions. In: Casadio, R., Myers, G. (eds.) WABI 2005. LNCS (LNBI), vol. 3692, pp. 204–215. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Eriksen, N.: (1 + ε)-approximation of sorting by reversals and transpositions. Theoretical Computer Science 289(1), 517–529 (2002)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gu, Q.-P., Peng, S., Sudborough, I.H.: A 2-approximation algorithm for genome rearrangements by reversals and transpositions. Theoretical Computer Science 210(2), 327–339 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals). Journal of the ACM 48, 1–27 (1999)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Hartman, T.: A simpler 1.5-approximation algorithm for sorting by transpositions. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 156–169. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Hartman, T., Sharan, R.: A 1.5-approximation algorithm for sorting by transpositions and transreversals. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, pp. 50–61. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Kaplan, H., Verbin, E.: Efficient data structures and a new randomized approach for sorting signed permutations by reversals. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 170–185. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Lin, G.-H., Xue, G.: Signed genome rearrangement by reversals and transpositions: Models and approximations. Theoretical Computer Science 259(1-2), 513–531 (2001)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Setubal, J., Meidanis, J.: Introduction to Computational Molecular Biology. PWS Publishing, Boston (1997)Google Scholar
  19. 19.
    Tannier, E., Sagot, M.-F.: Sorting by reversals in subquadratic time. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 1–13. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  20. 20.
    Walter, M.E.T., Dias, Z., Meidanis, J.: Reversal and transposition distance of linear chromosomes. In: Proc. of the Symposium on String Processing and Information Retrieval, pp. 96–102. IEEE Computer Society, Los Alamitos (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Bader
    • 1
  • Enno Ohlebusch
    • 1
  1. 1.Computer Science FacultyUniversity of UlmUlmGermany

Personalised recommendations