A Novel Minimized Dead-End Elimination Criterion and Its Application to Protein Redesign in a Hybrid Scoring and Search Algorithm for Computing Partition Functions over Molecular Ensembles

  • Ivelin Georgiev
  • Ryan H. Lilien
  • Bruce R. Donald
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3909)


Novel molecular function can be achieved by redesigning an enzyme’s active site so that it will perform its chemical reaction on a novel substrate. One of the main challenges for protein redesign is the efficient evaluation of a combinatorial number of candidate structures. The modeling of protein flexibility, typically by using a rotamer library of commonly-observed low-energy side-chain conformations, further increases the complexity of the redesign problem. A dominant algorithm for protein redesign is Dead-End Elimination (DEE), which prunes the majority of candidate conformations by eliminating rigid rotamers that provably are not part of the Global Minimum Energy Conformation (GMEC). The identified GMEC consists of rigid rotamers that have not been energy-minimized and is referred to as the rigid-GMEC. As a post-processing step, the conformations that survive DEE may be energy-minimized. When energy minimization is performed after pruning with DEE, the combined protein design process becomes heuristic, and is no longer provably accurate: That is, the rigid-GMEC and the conformation with the lowest energy among all energy-minimized conformations (the minimized-GMEC, or minGMEC) are likely to be different. While the traditional DEE algorithm succeeds in not pruning rotamers that are part of the rigid-GMEC, it makes no guarantees regarding the identification of the minGMEC. In this paper we derive a novel, provable, and efficient DEE-like algorithm, called minimized-DEE (MinDEE), that guarantees that rotamers belonging to the minGMEC will not be pruned, while still pruning a combinatorial number of conformations. We show that MinDEE is useful not only in identifying the minGMEC, but also as a filter in an ensemble-based scoring and search algorithm for protein redesign that exploits energy-minimized conformations. We compare our results both to our previous computational predictions of protein designs and to biological activity assays of predicted protein mutants. Our provable and efficient minimized-DEE algorithm is applicable in protein redesign, protein-ligand binding prediction, and computer-aided drug design.


Partition Function Mutation Sequence Nonribosomal Peptide Synthetase MinDEE Criterion Adenylation Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolon, D., Mayo, S.: Enzyme-like proteins by computational design. Proc. Natl. Acad. Sci. USA 98, 14274–14279 (2001)CrossRefGoogle Scholar
  2. 2.
    Cane, D., Walsh, C., Khosla, C.: Harnessing the biosynthetic code: combinations, permutations, and mutations. Science 282, 63–68 (1998)CrossRefGoogle Scholar
  3. 3.
    Challis, G., Ravel, J., Townsend, C.: Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chem. Biol. 7, 211–224 (2000)CrossRefGoogle Scholar
  4. 4.
    Conti, E., Stachelhaus, T., Marahiel, M., Brick, P.: Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of Gramicidin S. EMBO J. 16, 4174–4183 (1997)CrossRefGoogle Scholar
  5. 5.
    Cornell, W., Cieplak, P., Bayly, C., Gould, I., Merz, K., Ferguson, D., Spellmeyer, D., Fox, T., Caldwell, J., Kollman, P.: A second generation force field for the simulation of proteins, nucleic acids and organic molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  6. 6.
    Desmet, J., Maeyer, M., Hazes, B., Lasters, I.: The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356, 539–542 (1992)CrossRefGoogle Scholar
  7. 7.
    Doekel, S., Marahiel, M.: Dipeptide formation on engineered hybrid peptide synthetases. Chem. Biol. 7, 373–384 (2000)CrossRefGoogle Scholar
  8. 8.
    Eppelmann, K., Stachelhaus, T., Marahiel, M.: Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. Biochemistry 41, 9718–9726 (2002)CrossRefGoogle Scholar
  9. 9.
    Georgiev, I., Lilien, R., Donald, B.R.: A novel minimized dead-end elimination criterion and its application to protein redesign in a hybrid scoring and search algorithm for computing partition functions over molecular ensembles. Technical Report 570, Dartmouth Computer Science Dept. (2006),
  10. 10.
    Goldstein, R.: Efficient rotamer elimination applied to protein side-chains and related spin glasses. Biophys. J. 66, 1335–1340 (1994)CrossRefGoogle Scholar
  11. 11.
    Gordon, D., Mayo, S.: Radical performance enhancements for combinatorial optimization algorithms based on the dead-end elimination theorem. J. Comput. Chem. 19, 1505–1514 (1998)CrossRefGoogle Scholar
  12. 12.
    Hellinga, H., Richards, F.: Construction of new ligand binding sites in proteins of known structure: I. Computer-aided modeling of sites with pre-defined geometry. J. Mol. Biol. 222, 763–785 (1991)CrossRefGoogle Scholar
  13. 13.
    Jaramillo, A., Wernisch, L., Héry, S., Wodak, S.: Automatic procedures for protein design. Comb. Chem. High Throughput Screen. 4, 643–659 (2001)Google Scholar
  14. 14.
    Jin, W., Kambara, O., Sasakawa, H., Tamura, A., Takada, S.: De novo design of foldable proteins with smooth folding funnel: Automated negative design and experimental verification. Structure 11, 581–591 (2003)CrossRefGoogle Scholar
  15. 15.
    Keating, A., Malashkevich, V., Tidor, B., Kim, P.: Side-chain repacking calculations for predicting structures and stabilities of heterodimeric coiled coils. Proc. Natl. Acad. Sci. USA 98, 14825–14830 (2001)CrossRefGoogle Scholar
  16. 16.
    Leach, A., Lemon, A.: Exploring the conformational space of protein side chains using dead-end elimination and the A* algorithm. Proteins 33, 227–239 (1998)CrossRefGoogle Scholar
  17. 17.
    Lilien, R., Stevens, B., Anderson, A., Donald, B.R.: A novel ensemble-based scoring and search algorithm for protein redesign, and its application to modify the substrate specificity of the Gramicidin Synthetase A phenylalanine adenylation enzyme. Journal of Computational Biology 12(6–7), 740–761 (2005)CrossRefGoogle Scholar
  18. 18.
    Looger, L., Dwyer, M., Smith, J., Hellinga, H.: Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003)CrossRefGoogle Scholar
  19. 19.
    Lovell, S., Word, J., Richardson, J., Richardson, D.: The penultimate rotamer library. Proteins 40, 389–408 (2000)CrossRefGoogle Scholar
  20. 20.
    Marvin, J., Hellinga, H.: Conversion of a maltose receptor into a zinc biosensor by computational design. PNAS 98, 4955–4960 (2001)CrossRefGoogle Scholar
  21. 21.
    Mootz, H., Schwarzer, D., Marahiel, M.: Construction of hybrid peptide synthetases by module and domain fusions. Proc. Natl. Acad. Sci. USA 97, 5848–5853 (2000)CrossRefGoogle Scholar
  22. 22.
    Najmanovich, R., Kuttner, J., Sobolev, V., Edelman, M.: Side-chain flexibility in proteins upon ligand binding. Proteins 39(3), 261–268 (2000)CrossRefGoogle Scholar
  23. 23.
    Pierce, N., Spriet, J., Desmet, J., Mayo, S.: Conformational splitting: a more powerful criterion for dead-end elimination. J. Comput. Chem. 21, 999–1009 (2000)CrossRefGoogle Scholar
  24. 24.
    Pierce, N., Winfree, E.: Protein design is NP-hard. Protein Eng. 15, 779–782 (2002)CrossRefGoogle Scholar
  25. 25.
    Ponder, J., Richards, F.: Tertiary templates for proteins: use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193, 775–791 (1987)CrossRefGoogle Scholar
  26. 26.
    Schneider, A., Stachelhaus, T., Marahiel, M.: Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping. Mol. Gen. Genet. 257, 308–318 (1998)CrossRefGoogle Scholar
  27. 27.
    Schwarzer, D., Finking, R., Marahiel, M.: Nonribosomal peptides: from genes to products. Nat. Prod. Rep. 20, 275–287 (2003)CrossRefGoogle Scholar
  28. 28.
    Stachelhaus, T., Mootz, H., Marahiel, M.: The specificiy-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493–505 (1999)CrossRefGoogle Scholar
  29. 29.
    Stachelhaus, T., Schneider, A., Marahiel, M.: Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. Science 269, 69–72 (1995)CrossRefGoogle Scholar
  30. 30.
    Street, A., Mayo, S.: Computational protein design. Structure 7, R105–R109 (1999)Google Scholar
  31. 31.
    Weiner, S., Kollman, P., Case, D., Singh, U., Ghio, C., Alagona, G., Profeta, S., Weiner, P.: A new force field for molecular mechanical simulation of nucleic acids and proteins. J. Am. Chem. Soc. 106, 765–784 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ivelin Georgiev
    • 1
  • Ryan H. Lilien
    • 1
    • 2
    • 3
  • Bruce R. Donald
    • 1
    • 3
    • 4
    • 5
  1. 1.Dartmouth Computer Science DepartmentHanoverUSA
  2. 2.Dartmouth Medical SchoolHanover
  3. 3.Dartmouth Center for Structural Biology and Computational ChemistryHanover
  4. 4.Dartmouth Department of ChemistryHanover
  5. 5.Dartmouth Department of Biological SciencesHanover

Personalised recommendations