Advertisement

Markov Methods for Hierarchical Coarse-Graining of Large Protein Dynamics

  • Chakra Chennubhotla
  • Ivet Bahar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3909)

Abstract

Elastic network models (ENMs), and in particular the Gaussian Network Model (GNM), have been widely used in recent years to gain insights into the machinery of proteins. The extension of ENMs to supramolecular assemblies/complexes presents computational challenges, however, due to the difficulty of retaining atomic details in mode decomposition of large systems’ dynamics. Here, we present a novel approach to address this problem. Based on a Markovian description of communication/interaction stochastics, we map the full-atom GNM representation into a hierarchy of lower resolution networks, perform the analysis in the reduced space(s) and reconstruct the detailed models’ dynamics with minimal loss of data. The approach (hGNM) applied to chaperonin GroEL-GroES demonstrates that the shape and frequency dispersion of the dominant 25 modes of motion predicted by a full-residue (8015 nodes) GNM analysis are almost identically reproduced by reducing the complex into a network of 35 soft nodes.

Keywords

Stationary Distribution Normal Mode Analysis Elastic Network Model Chaperonin GroEL Kernel Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ma, J.: Usefulness and limitations of normal mode analysis in modeling dynamics of biomolecular systems. Structure 13, 373–380 (2005)CrossRefGoogle Scholar
  2. 2.
    Bahar, I., Rader, A.J.: Coarse-grained normal mode analysis in structural biology. Curr. Opi. Struct. Bio. 15, 1–7 (2005)CrossRefGoogle Scholar
  3. 3.
    Rader, A.J., Chennubhotla, C., Yang, L.-W., Bahar, I.: The Gaussian Network Model: Theory and Applications. In: Cui, Q., Bahar, I. (eds.) Normal Mode Analysis: Theory and Applications to Biological and Chemical Systems. CRC Press, Boca Raton (2005)Google Scholar
  4. 4.
    Bahar, I., Atilgan, A.R., Erman, B.: Direct evaluation of thermal fluctuations in protein using a single parameter harmonic potential. Folding & Design 2, 173–181 (1997)CrossRefGoogle Scholar
  5. 5.
    Haliloglu, T., Bahar, I., Erman, B.: Gaussian dynamics of folded proteins. Phys. Rev. Lett. 79, 3090 (1997)CrossRefGoogle Scholar
  6. 6.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research 28, 235–242 (2000)CrossRefGoogle Scholar
  7. 7.
    Miyazawa, S., Jernigan, R.L.: Estimation of effective inter-residue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 18, 534 (1985)CrossRefGoogle Scholar
  8. 8.
    Bahar, I., Jernigan, R.L.: Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J. Mol. Biol. 266, 195 (1997)CrossRefGoogle Scholar
  9. 9.
    Chung, F.R.K.: Spectral Graph Theory. CBMS Lectures, AMS (1997)Google Scholar
  10. 10.
    Doruker, P., Atilgan, A.R., Bahar, I.: Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: Application to α-amylase inhibitor. Proteins 40, 512–524 (2000)CrossRefGoogle Scholar
  11. 11.
    Atilgan, A.R., Durell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505 (2001)CrossRefGoogle Scholar
  12. 12.
    Hinsen, K.: Analysis of domain motions by approximate normal mode calculations. Proteins 33, 417 (1998)CrossRefGoogle Scholar
  13. 13.
    Tama, F., Sanejouand, Y.H.: Conformational change of proteins arising from normal mode calculations. Protein Eng. 14, 1–6 (2001)CrossRefGoogle Scholar
  14. 14.
    Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK User Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods, TR, Dept. of CAM, Rice University (1996)Google Scholar
  15. 15.
    Simon, H., Zha, H.: Low-rank matrix approximation using the Lanczos bidiagonalization process with applications. SIAM J. of Sci. Comp. 21, 2257–2274 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Barnard, S., Simon, H.: A fast multi-level implementation of recursive spectral bisection for partitioning usntructured grid. Concurrency: Practice and Experience 6, 101–117 (1994)CrossRefGoogle Scholar
  17. 17.
    Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral Grouping Using the Nyström Method. IEEE PAMI 26, 2 (2004)Google Scholar
  18. 18.
    Koren, Y., Carmel, L., Harel, D.: Drawing Huge Graphs by Algebraic Multigrid Optimization. Multiscale Modeling and Simulation 1(4), 645–673 (2003)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Doruker, P., Jernigan, R.L., Bahar, I.: Dynamics of large proteins through hierarchical levels of coarse-grained structures. J. Comp. Chem. 23, 119 (2002)CrossRefGoogle Scholar
  20. 20.
    Kurkcuoglu, O., Jernigan, R.L., Doruker, P.: Mixed levels of coarse-graining of large proteins using elastic network model methods in extracting the slowest motions. Polymers 45, 649–657 (2004)CrossRefGoogle Scholar
  21. 21.
    Marques, O.: BLZPACK: Description and User’s Guide, TR/PA/95/30, CERFACS, Toulouse, France (1995)Google Scholar
  22. 22.
    Tama, F., Gadea, F.X., Marques, O., Sanejouand, Y.H.: Building-block approach for determining low-frequency normal modes of macromolecules. Proteins 41, 1–7 (2000)CrossRefGoogle Scholar
  23. 23.
    Li, G.H., Cui, Q.: A coarse-grained normal mode approach for macromolecules: an efficient implementation and application to Ca2 + -ATPase. Bipohys. J. 83, 2457 (2002)CrossRefGoogle Scholar
  24. 24.
    Chennubhotla, C., Jepson, A.: Hierarchical Eigensolver for Transition Matrices in Spectral Methods. NIPS 17, 273–280 (2005)Google Scholar
  25. 25.
    McLachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to Clustering. Marcel Dekker, N.Y (1988)MATHGoogle Scholar
  26. 26.
    Kullback, S.: Information Theory and Statistics. Dover Publications, New York (1959)MATHGoogle Scholar
  27. 27.
    Kullback, S., Leibler, R.A.: On Information and Sufficiency. Ann. of Math. Stat. 22, 79–86 (1951)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Xu, Z.H., Horwich, A.L., Sigler, P.B.: The crystal structure of the asymmetric GroEL-GroES(ADP)7 chaperonin complex. Nature 388, 741–750 (1997)CrossRefGoogle Scholar
  29. 29.
    Keskin, O., Bahar, I., Flatow, D., Covell, D.G., Jernigan, R.L.: Molecular Mechanisms of Chaperonin GroEL-GroES Function. Biochemistry 41, 491–501 (2002)CrossRefGoogle Scholar
  30. 30.
    Watkins, D.S.: Fundamentals of Matrix Computations. Wiley-Interscience, New York (2002)MATHCrossRefGoogle Scholar
  31. 31.
    Kundu, S., Melton, J.S., Sorensen, D.C., Phillips, G.N.: Dynamics of proteins in crystals: comparison of experiment with imple models. Biophys. J. 83, 723–732 (2002)CrossRefGoogle Scholar
  32. 32.
    Landry, S.J., Zeilstra-Ryalls, J., Fayet, O., Georgopoulos, C., Gierasch, L.M.: Characterization of a functionally important mobile domain of GroES. Nature 364, 255–258 (1993)CrossRefGoogle Scholar
  33. 33.
    Hohfeld, J., Hartl, F.U.: Role of the chaperonin cofactor Hsp10 in protein folding and sorting in yeast mitochondria. J. Cell Biol. 126, 305–315 (1994)CrossRefGoogle Scholar
  34. 34.
    Kovalenko, O., Yifrach, O., Horovitz, A.: Residue lysine-34 in GroES modulates allosteric transitions in GroEL. Biochemistry 33, 14974–14978 (1994)CrossRefGoogle Scholar
  35. 35.
    Richardson, A., van der Vies, S.M., Keppel, F., Taher, A., Landry, S.J., Georgopoulos, C.: Compensatory changes in GroEL/Gp31 affinity as a mechanism for allele-specific genetic interaction. J. Biol. Chem. 274, 52–58 (1999)CrossRefGoogle Scholar
  36. 36.
    Richardson, A., Georgopoulos, C.: Genetic analysis of the bacteriophage T4-encoded cochaperonin Gp31. Genetics 152, 1449–1457 (1999)Google Scholar
  37. 37.
    Richardson, A., Schwager, F., Landry, S.J., Georgopoulos, C.: The importance of a mobile loop in regulating chaperonin/ co-chaperonin interaction: humans versus Escherichia coli. J. Biol. Chem. 276, 4981–4987 (2001)CrossRefGoogle Scholar
  38. 38.
    Shewmaker, F., Maskos, K., Simmerling, C., Landry, S.J.: A mobile loop order-disorder transition modulates the speed of chaperoin cycling. J. Biol. Chem. 276, 31257–31264 (2001)CrossRefGoogle Scholar
  39. 39.
    Ma, J., Sigler, P.B., Xu, Z.H., Karplus, M.: A Dynamic Model for the Allosteric Mechanism of GroEL. J. Mol. Biol. 302, 303–313 (2000)CrossRefGoogle Scholar
  40. 40.
    Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D.C., Joachimiak, A., Horwich, A.L., Sigler, P.B.: The crystal structure of the bacterial chaperonin GroEL at 2.8 Å. Nature 371, 578–586 (1994)CrossRefGoogle Scholar
  41. 41.
    Yifrach, O., Horovitz, A.: Nested cooperativity in the ATPase activity of the oligomeric chaperonin GroEL. Biochemistry 34, 5303–5308 (1995)CrossRefGoogle Scholar
  42. 42.
    Saibil, H.R., Ranson, N.R.: The chaperonin folding machine. Trends in Biochem. Sci. 27, 627–632 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chakra Chennubhotla
    • 1
  • Ivet Bahar
    • 1
  1. 1.Department of Computational Biology, School of MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations