Abstract
So far, most methods for identifying sequences under selection based on comparative sequence data have either assumed selectional pressures are the same across all branches of a phylogeny, or have focused on changes in specific lineages of interest. Here, we introduce a more general method that detects sequences that have either come under selection, or begun to drift, on any lineage. The method is based on a phylogenetic hidden Markov model (phylo-HMM), and does not require element boundaries to be determined a priori, making it particularly useful for identifying noncoding sequences. Insertions and deletions (indels) are incorporated into the phylo-HMM by a simple strategy that uses a separately reconstructed “indel history.” To evaluate the statistical significance of predictions, we introduce a novel method for computing P-values based on prior and posterior distributions of the number of substitutions that have occurred in the evolution of predicted elements. We derive efficient dynamic-programming algorithms for obtaining these distributions, given a model of neutral evolution. Our methods have been implemented as computer programs called DLESS (Detection of LinEage-Specific Selection) and phyloP (phylogenetic P-values). We discuss results obtained with these programs on both real and simulated data sets.
This paper is presented here in abbreviated form; the complete version is available from http://www.bscb.cornell.edu/Homepages/Adam_Siepel/dless.pdf
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Nobrega, M.A., Ovcharenko, I., Afzal, V., Rubin, E.M.: Scanning human gene deserts for long-range enhancers. Science 302, 413 (2003)
Woolfe, A., Goodson, M., Goode, D., Snell, P., McEwen, G., Vavouri, T., Smith, S., North, P., Callaway, H., Kelly, K., et al.: Highly conserved non-coding sequences are associated with vertebrate development. PLoS Biol. 3, e7 (2005)
Boffelli, D., McAuliffe, J., Ovcharenko, D., Lewis, K.D., Ovcharenko, I., Pachter, L., Rubin, E.M.: Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299, 1391–1394 (2003)
Margulies, E.H., Blanchette, M., NISC Comparative Sequencing Program, Haussler, D., Green, E.D.: Identification and characterization of multi-species conserved sequences. Genome Res 13, 2507–2518 (2003)
Cooper, G.M., Stone, E.A., Asimenos, G., Green, E.D., Batzoglou, S., Sidow, A.: Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 15, 901–913 (2005)
Siepel, A., Bejerano, G., Pedersen, J.S., Hinrichs, A.S., Hou, M., Rosenbloom, K., Clawson, H., Spieth, J., Hillier, L.W., Richards, S., et al.: Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res 15, 1034–1050 (2005)
Nielsen, R., Yang, Z.: Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148, 929–936 (1998)
Yang, Z., Nielsen, R.: Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19, 908–917 (2002)
Clark, A.G., Glanowski, S., Nielsen, R., Thomas, P.D., Kejariwal, A., Todd, M.A., Tanenbaum, D.M., Civello, D., Lu, F., Murphy, B., et al.: Inferring nonneutral evolution from human-chimp-mouse orthologous gene trios. Science 302, 1960–1963 (2003)
Forsberg, R., Christiansen, F.B.: A codon-based model of host-specific selection in parasites, with an application to the influenza A virus. Mol. Biol. Evol. 20, 1252–1259 (2003)
Guindon, S., Rodrigo, A.G., Dyer, K.A., Huelsenbeck, J.P.: Modeling the site-specific variation of selection patterns along lineages. Proc. Natl. Acad. Sci USA 101, 12957–12962 (2004)
Nielsen, R., Bustamante, C., Clark, A.G., Glanowski, S., Sackton, T.B., Hubisz, M.J., Fledel-Alon, A., Tanenbaum, D.M., Civello, D., White, T.J., et al.: A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005)
ENCODE Project Consortium: The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004)
Felsenstein, J., Churchill, G.A.: A hidden Markov model approach to variation among sites in rate of evolution. Mol. Biol. Evol. 13, 93–104 (1996)
Yang, Z.: A space-time process model for the evolution of DNA sequences. Genetics 139, 993–1005 (1995)
Siepel, A., Haussler, D.: Phylogenetic hidden Markov models. In: Nielsen, R. (ed.) Statistical Methods in Molecular Evolution, pp. 325–351. Springer, New York (2005)
Cooper, G.M., Brudno, M., Stone, E.A., Dubchak, I., Batzoglou, S., Sidow, A.: Characterization of evolutionary rates and constraints in three mammalian genomes. Genome Res 14, 539–548 (2004)
McAuliffe, J.D., Pachter, L., Jordan, M.I.: Multiple-sequence functional annotation and the generalized hidden Markov phylogeny. Bioinformatics 20, 1850–1860 (2004)
Siepel, A., Haussler, D.: Computational identification of evolutionarily conserved exons. In: Proc. 8th Int’l Conf. on Research in Computational Molecular Biology, pp. 177–186 (2004)
Holmes, I., Bruno, W.J.: Evolutionary HMMs: a Bayesian approach to multiple alignment. Bioinformatics 17, 803–820 (2001)
Lunter, G., Miklos, I., Drummond, A., Jensen, J.L., Hein, J.: Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinformatics 6, 83 (2005)
Blanchette, M., Green, E.D., Miller, W., Haussler, D.: Reconstructing large regions of an ancestral mammalian genome in silico. Genome Res 14, 2412–2423 (2004)
Zheng, Q.: On the dispersion index of a Markovian molecular clock. Math. Biosci. 172, 115–128 (2001)
Jukes, T.H., Cantor, C.R.: Evolution of protein molecules. In: Munro, H. (ed.) Mammalian Protein Metabolism, pp. 21–132. Academic Press, New York (1969)
Gillespie, J.: Lineage effects and the index of dispersion of molecular evolution. Mol. Biol. Evol. 6, 636–647 (1989)
Felsenstein, J.: Evolutionary trees from DNA sequences. J. Mol. Evol. 17, 368–376 (1981)
Blanchette, M., Kent, W.J., Riemer, C., Elnitski, L., Smit, A.F.A., Roskin, K.M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E.D., et al.: Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res 14, 708–715 (2004)
Felsenstein, J.: Inferring Phylogenies. Sinauer Associates, Inc., Sunderland, Massachusetts (2004)
Nielsen, R., Huelsenbeck, J.P.: Detecting positively selected amino acid sites using posterior predictive P-values. Pac. Symp. Biocomput., 576–588 (2002)
Hasegawa, M., Kishino, H., Yano, T.: Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985)
Smith, N.G.C., Brandstrom, M., Ellegren, H.: Evidence for turnover of functional noncoding DNA in mammalian genome evolution. Genomics 84, 806–813 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Siepel, A., Pollard, K.S., Haussler, D. (2006). New Methods for Detecting Lineage-Specific Selection. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_17
Download citation
DOI: https://doi.org/10.1007/11732990_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-33295-4
Online ISBN: 978-3-540-33296-1
eBook Packages: Computer ScienceComputer Science (R0)