Skip to main content

RNA Secondary Structure Prediction Via Energy Density Minimization

  • Conference paper
Research in Computational Molecular Biology (RECOMB 2006)

Abstract

There is a resurgence of interest in RNA secondary structure prediction problem (a.k.a. the RNA folding problem) due to the discovery of many new families of non-coding RNAs with a variety of functions. The vast majority of the computational tools for RNA secondary structure prediction are based on free energy minimization. Here the goal is to compute a non-conflicting collection of structural elements such as hairpins, bulges and loops, whose total free energy is as small as possible. Perhaps the most commonly used tool for structure prediction, mfold/RNAfold, is designed to fold a single RNA sequence. More recent methods, such as RNAscf and alifold are developed to improve the prediction quality of this tool by aiming to minimize the free energy of a number of functionally similar RNA sequences simultaneously. Typically, the (stack) prediction quality of the latter approach improves as the number of sequences to be folded and/or the similarity between the sequences increase. If the number of available RNA sequences to be folded is small then the predictive power of multiple sequence folding methods can deteriorate to that of the single sequence folding methods or worse.

In this paper we show that delocalizing the thermodynamic cost of forming an RNA substructure by considering the energy density of the substructure can significantly improve on secondary structure prediction via free energy minimization. We describe a new algorithm and a software tool that we call Densityfold, which aims to predict the secondary structure of an RNA sequence by minimizing the sum of energy densities of individual substructures. We show that when only one or a small number of input sequences are available, Densityfold can outperform all available alternatives. It is our hope that this approach will help to better understand the process of nucleation that leads to the formation of biologically relevant RNA substructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mapping RNA Form & Function. Science 309(5740) (September 2, 2005)

    Google Scholar 

  2. RNA_align tool, http://www.csd.uwo.ca/faculty/kzhang/rna/

  3. Akutsu, T.: Dynamic programming algorithms for RNA secondary structure prediction with pseudoknots. Discr. Appl. Math. 104(1-3), 45–62 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arslan, A.N., Egecioglu, O., Pevzner, P.A.: A New Approach to Sequence Comparison: Normalized Sequence Alignment. In: Proc. RECOMB, pp. 2–11. ACM, New York (2001)

    Google Scholar 

  5. Bafna, V., Tang, H., Zhang, S.: Consensus Folding of Unaligned RNA Sequences Revisited. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 172–187. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Condon, A., Davy, B., Rastegari, B., Zhao, S., Tarrant, F.: Classifying RNA pseudoknotted structures. Theor. Comput. Sci. 320(1), 35–50 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Davydov, E., Batzoglou, S.: A Computational Model for RNA Multiple Structural Alignment. In: GECCO 2004. LNCS, vol. 3103, pp. 254–269. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Gorodkin, J., Heyer, L., Stormo, G.: Finding the most significant common sequence and structure motifs in a set of RNA sequences. Nucl. Acids Res. 25(18), 3724–3732 (1997)

    Article  Google Scholar 

  9. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., Eddy, S.: Rfam: an RNA family database. Nucl. Acids Res. 31(1), 439–441 (2003)

    Article  Google Scholar 

  10. Hofacker, I., Fekete, M., Stadler, P.: Secondary structure prediction for aligned RNA sequences. J. Mol. Biol. 319(5), 1059–1066 (2002)

    Article  Google Scholar 

  11. Ji, Y., Xu, X., Stormo, G.D.: A graph theoretical approach for predicting common RNA secondary structure motifs including pseudoknots in unaligned sequences. Bioinformatics 20(10), 1591–1602 (2004)

    Article  Google Scholar 

  12. Lin, G., Ma, B., Zhang, K.: Edit distance between two RNA structures. In: Proc. RECOMB, pp. 211–220. ACM, New York (2001)

    Google Scholar 

  13. Lyngso, R.B., Zuker, M., Pedersen, C.N.S.: Fast evaluation of internal loops in RNA secondary structure prediction. Bioinformatics 15(6), 440–445 (1999)

    Article  Google Scholar 

  14. Ma, B., Wang, L., Zhang, K.: Computing similarity between RNA structures. Theoretical Computer Science 276(1-2), 111–132 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mathews, D., Sabina, J., Zuker, M., Turner, D.: Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288(5), 911–940 (1999)

    Article  Google Scholar 

  16. Mathews, D., Turner, D.: Dynalign: an algorithm for finding the secondary structure common to two RNA sequences. J. Mol. Biol. 317(2), 191–203 (2002)

    Article  Google Scholar 

  17. Nussinov, R., Jacobson, A.: Fast algorithm for predicting the secondary structure of single stranded RNA. Proc. Nat. Acad. Sci. USA 77(11), 6309–6313 (1980)

    Article  Google Scholar 

  18. Rivas, E., Eddy, S.R.: A dynamic programming algorithm for RNA structure prediction including pseudoknots. J. Mol. Biol. 285(5), 2053–2068 (1999)

    Article  Google Scholar 

  19. Sankoff, D.: Simultaneous Solution of the RNA Folding, Alignment and Protosequence Problems. SIAM J. Appl. Math. 45, 810–825 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  20. Thompson, J., Higgins, D., Gibson, T.: Clustal-W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680 (1994)

    Article  Google Scholar 

  21. Tinoco, I., Uhlenbeck, O., Levine, M.: Estimation of secondary structure in ribonucleic acids. Nature 230(5293), 362–367 (1971)

    Article  Google Scholar 

  22. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9(1), 133–148 (1981)

    Article  Google Scholar 

  23. Zuker, M.: On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alkan, C. et al. (2006). RNA Secondary Structure Prediction Via Energy Density Minimization. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_12

Download citation

  • DOI: https://doi.org/10.1007/11732990_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics