Advertisement

A Compositional Approach to the Stochastic Dynamics of Gene Networks

  • Ralf Blossey
  • Luca Cardelli
  • Andrew Phillips
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3939)

Abstract

We propose a compositional approach to the dynamics of gene regu-latory networks based on the stochastic π-calculus, and develop a representation of gene network elements which can be used to build complex circuits in a transparent and efficient way. To demonstrate the power of the approach we apply it to several artificial networks, such as the repressilator and combinatorial gene circuits first studied in Combinatorial Synthesis of Genetic Networks [1]. For two examples of the latter systems, we point out how the topology of the circuits and the interplay of the stochastic gate interactions influence the circuit behavior. Our approach may be useful for the testing of biological mechanisms proposed to explain the experimentally observed circuit dynamics.

Keywords

Gene Network Stochastic Dynamics Gene Circuit Promoter Site Gene Gate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guet, C.C., Elowitz, M.B., Hsing, W., Leibler, S.: Combinatorial synthesis of genetic networks. Science 296, 1466–1470 (2002)CrossRefGoogle Scholar
  2. 2.
    Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks. Proc. Nat. Acad. Sci. 98, 8614–8619 (2001)CrossRefGoogle Scholar
  3. 3.
    Paulsson, J., Berg, O.G., Ehrenberg, M.: Stochastic Focusing: fluctuationenhanced sensitivity of intracellular regulation. Proc. Nat. Acad. Sci. 97, 7148–7153 (2000)CrossRefGoogle Scholar
  4. 4.
    Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge University Press, Cambridge (1999)zbMATHGoogle Scholar
  5. 5.
    Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of stochastic process algebras to bioinformatics of molecular processes. Information Processing Letters 80, 25–31 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Regev, A.: Computational Systems Biology: A Calculus for Biomolecular knowledge. Ph.D. Thesis, Tel Aviv University (2002)Google Scholar
  7. 7.
    Regev, A., Shapiro, E.: Cellular abstractions: Cells as computation. Nature 419, 343 (2002)CrossRefGoogle Scholar
  8. 8.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: BioAmbients: An abstraction for biological compartments. Theoretical Computer Science 325(1), 141–167 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cardelli, L.: Brane Calculi - Interactions of Biological Membranes. Computational Methods in Systems Biology, pp. 257–278. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  10. 10.
    Chiarugi, D., Curti, M., Degano, P., Marangoni, R.: VICE: A vIrtual cEll. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 207–220. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Kuttler, C., Niehren, J.: Gene Regulation in the Pi Calculus: Simulating Cooperativity at the Lambda Switch. Transactions on Computational Systems Biology (2005) (to appear)Google Scholar
  12. 12.
    Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)CrossRefGoogle Scholar
  13. 13.
    Philips, A., Cardelli, L.: A Correct Abstract Machine for the Stochastic Picalculus. In: Proc. BioConcur 2004 (2005)Google Scholar
  14. 14.
    Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. J. Chem. Phys. 81, 2340–2361 (1977)CrossRefGoogle Scholar
  15. 15.
    Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  16. 16.
    Guet, C.C.: Personal communicationGoogle Scholar
  17. 17.
    Wigler, M., Mishra, B.: Wild by nature. Science 296, 1407–1408 (2002)CrossRefGoogle Scholar
  18. 18.
    Mao, L., Resat, H.: Probabilistic representation of gene regulatory networks. Bioinformatics 20, 2258–2269 (2004)CrossRefGoogle Scholar
  19. 19.
    Ronen, M., Rosenberg, R., Shraiman, B.I., Alon, U.: Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics. Proc. Nat. Acad. Sci. 99, 10555–10560 (2002)CrossRefGoogle Scholar
  20. 20.
    Brenner, S.: Loose Ends. Curr. Biology 5, 332 (1995)CrossRefGoogle Scholar
  21. 21.
    Bray, D.: Reasoning for Results. Nature 412, 863 (2001)CrossRefGoogle Scholar
  22. 22.
    Lazebnik, Y.: Can a biologist fix a radio? Or, what I learned while studying apoptosis. Cancer Cell 2, 179–182 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ralf Blossey
    • 1
  • Luca Cardelli
    • 2
  • Andrew Phillips
    • 2
  1. 1.Interdisciplinary Research InstituteVilleneuve d’AscqFrance
  2. 2.Microsoft ResearchCambridgeUnited Kingdom

Personalised recommendations