Advertisement

A Connectionist Architecture for the Evolution of Rhythms

  • João M. Martins
  • Eduardo R. Miranda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3907)

Abstract

In this paper we propose the use of an interactive multi-agent system for the study of rhythm evolution. The aim of the model proposed here is to show to what extent new rhythms emerge from both the interaction between autonomous agents, and self-organisation of internal rhythmic representations. The agents’ architecture includes connectionist models to process rhythmic information, by extracting, representing and classifying their compositional patterns. The internal models of the agents are then explained and tested. This architecture was developed to explore the evolution of rhythms in a society of virtual agents based upon imitation games, inspired by research on Language evolution.

Keywords

Virtual Agent Winning Neuron Imitation Game Computer Music Interactive Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Horner, A., Goldberg, D.: Genetic algorithms and computer-assisted music composition. In: Proceedings of the Fourth International Conference on Genetic Algorithms, San Mateo, CA. Morgan Kauffman, San Francisco (1991)Google Scholar
  2. 2.
    Gratland-Jones, A., Copley, P.: The suitability of genetic algorithms for musical composition. Contemporary Music Review 22(3), 43–55 (2003)CrossRefGoogle Scholar
  3. 3.
    Griffith, N., Todd, P.: Musical Networks. MIT-Press, Cambridge (1999)Google Scholar
  4. 4.
    Blackmore, S.: The Meme Machine. Oxford University Press, Oxford (1999)Google Scholar
  5. 5.
    Gimenes, M., Miranda, E.R., Johnson, C.: A memetic approach to the evolution of rhythms in a society of software agents. In: Proceedings of the 10th Brazilian Symposium of Musical Computation (SBCM), Belo Horizonte (Brazil) (2005)Google Scholar
  6. 6.
    Horowitz, D.: Generating rhythms with genetic algorithms. In: Anderson, P., Warwick, K. (eds.) Proceedings of the International Computer Music Conference, Aarhus (Denmark). International Computer Music Association (1994)Google Scholar
  7. 7.
    Tokui, N., Iba, H.: Music composition with interactive evolutionary computation. In: Proc. 3rd International Conf. on Generative Art, Milan, Italy (2000)Google Scholar
  8. 8.
    Brown, A.R.: Exploring rhythmic automata. In: Rothlauf, F., et al. (eds.) Proceedigs of the 3rd European Workshop on Evolutionary Music and Art, Lausanne (Swizerland). Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Coutinho, E., Gimenes, M., Martins, J., Miranda, E.R.: Computational musicology: An artificial life approach. In: Proceedings of the 2nd Portuguese Workshop on Artificial Life and Evolutionary AlgorithmsWorkshop, Covilhã (Portugal). Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Miranda, E., Todd, P.: A-life and musical composition: A brief survey. In: Proceedings of the IX Brazilian Symposium on Computer Music, Campinas (Brazil) (2003)Google Scholar
  11. 11.
    Steels, L.: The synthetic modeling of language origins. Evolution of Communication 1(1), 1–34 (1997)CrossRefGoogle Scholar
  12. 12.
    Werner, G., Todd, P.: Too many love songs: Sexual selection and the evolution of communication. In: Husbands, P., Harvey, I. (eds.) ECAL 1997, pp. 434–443. MIT Press, Cambridge (1997)Google Scholar
  13. 13.
    Miranda, E.R.: Emergent sound repertoires in virtual societies. Computer Music Journal 26(2), 77–90 (2002)CrossRefGoogle Scholar
  14. 14.
    Wittgenstein, L.: Philosophical Investigations. Blackwell Publishers, Malden (1979)Google Scholar
  15. 15.
    Steels, L.: A self-organizing spatial vocabulary. Artificial Life 2(3), 319–332 (1995)CrossRefGoogle Scholar
  16. 16.
    de Boer, B.: Self-Organisation in Vowel Systems. PhD thesis, Vrije Universiteit Brussel AI-lab (1999)Google Scholar
  17. 17.
    Reck Miranda, E.: Mimetic development of intonation. In: Anagnostopoulou, C., Ferrand, M., Smaill, A. (eds.) ICMAI 2002. LNCS (LNAI), vol. 2445, p. 107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Haykin, S.: Neural Networks. Prentice Hall, New Jersey (1999)MATHGoogle Scholar
  19. 19.
    James, D.L., Miikkulainen, R.: SARDNET: a self-organizing feature map for sequences. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp. 577–584. MIT Press, Cambridge (1995)Google Scholar
  20. 20.
    Bosma, M.: Musicology in a virtual world: A bottom up approach to the study of musical evolution. Master’s thesis, University of Groningen (2005)Google Scholar
  21. 21.
    Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences. Springer, Heidelberg (1997)MATHGoogle Scholar
  22. 22.
    Bednar, J.A., Miikkulainen, R.: Joint maps for orientation, eye, and direction preference in a self-organizing model of V1. Neurocomputing (2006) (in press) Google Scholar
  23. 23.
    Rosenblatt, F.: Principles of neurodynamics: Perceptrons and the theory of brain mechanisms. Spartan Books, Washington (1962)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • João M. Martins
    • 1
  • Eduardo R. Miranda
    • 1
  1. 1.Interdisciplinary Centre for Computer Music ResearchUniversity of PlymouthPlymouthUnited Kingdom

Personalised recommendations