Artificial Life Models in Lung CTs

  • Sorin Cristian Cheran
  • Gianfranco Gargano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3907)


With the present paper we introduce a new Computer Assisted Detection method for Lung Cancer in CT images. The algorithm is based on several sub-modules: 3D Region Growing, Active Contour And Shape Models, Centre of Maximal Balls, but the core of our approach are Biological Models of ants known as Artificial Life models. In the first step of the algorithm images undergo a 3D region growing procedure for identifying the ribs cage; then Active Contour Models are used in order to build a confined area for the incoming ants that are deployed to make clean and accurate reconstruction of the bronchial and vascular tree, which is removed from the image just before checking for nodules.


Vascular Tree Active Contour Model Computer Tomography Image Computer Assist Detection 512x512 Pixel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grasse, P.: Termitologia, Tome II. Fondation des Sociétés. Construction, Paris, Masson (1984)Google Scholar
  2. 2.
    Colorni, A., Dorigo, M., Maniezzo, V.: Distributed Optimization by ant colonies. In: Proc. ECAL 1991, Paris, France, pp. 134–142. Elsevier Publishing, Amsterdam (1991)Google Scholar
  3. 3.
    Colorni, A., Dorigo, M., Maniezzo, V.: The ant system: optimization by a colony of cooperat ing agents. IEEE Trans. Syst., Man. & Cybern. –PartB 26(1), 1–13 (1996)Google Scholar
  4. 4.
    Colorni, A., Dorigo, M., Maniezzo, V.: The Ant system applied to the quadratic assignment problem, Technical Report 94/28 of IRIDIA, Univeriste Libre de Bruxelles (1994)Google Scholar
  5. 5.
    Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particles Swarm Theory. In: Proc. Sixth International Symposium on Micro Machine and Human Science (Nagoya, Japan), pp. 39–43. IEEE Service Center, Piscataway (1995)CrossRefGoogle Scholar
  6. 6.
    Chialvo, D., Millonas, M.: How Swarms Build Cognitive Maps. In: Steels, L. (ed.) The Biology and Technology of Intelligent Autonomous Agents. NATO ASI Series, vol. (144), pp. 439–450 (1995)Google Scholar
  7. 7.
    Ramos, V., Almeida, F.: Artificial Ant Colonies in Digital Image Habitats -A Mass Behav iour Effect Study on Pattern Recognition. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Mazouzi, S., Batouche, M.: A self-adaptive multi-agent system for 3D object recognitionGoogle Scholar
  9. 9.
    Remagnino, P., Tan, T., Baker, K.: Multi-agent visual surveillance of dynamic scenes. Image and vision computing 16, 529–532 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sorin Cristian Cheran
    • 1
  • Gianfranco Gargano
    • 2
  1. 1.Dipartimento di Informatica, Associatione Sviluppo PiemonteIstituto Nazionale di Fisica Nucleare, Sezione di Torino, Universita’ degli Studi di Torino 
  2. 2.Dipartimento di FisicaIstituto Nazionale di Fisica Nucleare, Sezione di Bari, Universita’ degli Studi di Bari 

Personalised recommendations