Advertisement

On the Practical Limits of the Evolutionary Digital Filter Design at the Gate Level

  • Lukáš Sekanina
  • Zdeněk Vašíček
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3907)

Abstract

Simple digital FIR filters have recently been evolved directly in the reconfigurable gate array, ignoring thus a classical method based on multiply–and–accumulate structures. This work indicates that the method is very problematic. In this paper, the gate-level approach is extended to IIR filters, a new approach is proposed to the fitness calculation based on the impulse response evaluation and a comparison is performed between the evolutionary FIR filter design utilizing a full set and a reduced set of gates. The objective of these experiments is to show that the evolutionary design of digital filters at the gate level does not produce filters that are useful in practice when linearity of filters is not guaranteed by the evolutionary design method.

Keywords

Impulse Response Cellular Automaton Digital Filter Evolutionary Design Training Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Erba, M., et al.: An Evolutionary Approach to Automatic Generation of VHDL Code for Low-Power Digital Filters. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 36–50. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Ganguly, N., et al.: A survey on cellular automata. Technical report, Centre for High Performance Computing, Dresden University of Technology (December 2003)Google Scholar
  3. 3.
    Gwaltney, D., Dutton, K.: A VHDL Core for Intrinsic Evolution of Discrete Time Filters with Signal Feedback. In: Proc. of 2005 NASA/DoD Conference on Evolvable Hardware, pp. 43–50. IEEE Comp. Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  4. 4.
    Harris, S.P., Ifeachor, E.C.: Automating IIR filter design by genetic algorithm. In: Proc. of the First IEE/IEEE International Conference on Genetic Algorithms in Engineering Systems: Innovations and Applications (GALESIA 1995), vol. 414, pp. 271–275. IEE, London (1995)CrossRefGoogle Scholar
  5. 5.
    Hounsell, B.I., Arslan, T., Thomson, R.: Evolutionary design and adaptation of high performance digital filters within an embedded reconfigurable fault tolerant hardware platform. Soft Computing 8(5), 307–317 (2004)Google Scholar
  6. 6.
    Ifeachor, E.C., Jervis, B.W.: Digital Signal Processing: A Practical Approach, 2nd edn. Pearson Education, London (2002)Google Scholar
  7. 7.
    Martinez-Peiro, M., Boemo, E.I., Wanhammar, L.: Design of High-Speed Multiplierless Filters Using a Nonrecursive Signed Common Subexpression Algorithm. IEEE Trans. Circuits Syst. II 49(3), 196–203 (2002)CrossRefGoogle Scholar
  8. 8.
    Miller, J., Job, D., Vassilev, V.: Principles in the Evolutionary Design of Digital Circuits – Part I. Genetic Programming and Evolvable Machines 1(1), 8–35 (2000)CrossRefGoogle Scholar
  9. 9.
    Miller, J.: Evolution of Digital Filters Using a Gate Array Model. In: Poli, R., Voigt, H.-M., Cagnoni, S., Corne, D.W., Smith, G.D., Fogarty, T.C. (eds.) EvoIASP 1999 and EuroEcTel 1999. LNCS, vol. 1596, pp. 121–132. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Miller, J.: On the filtering properties of evolved gate arrays. In: Proc. of NASA/DOD Workshop on Evolvable Hardware, pp. 2–11. IEEE Comp. Society, Los Alamitos (1999)CrossRefGoogle Scholar
  11. 11.
    Miller, J.: Digital Filter Design at Gate-level using Evolutionary Algorithms. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 1127–1134. Morgan Kaufmann, San Francisco (1999)Google Scholar
  12. 12.
    Wade, G., Roberts, A., Williams, G.: Multiplier-less FIR filter design using a genetic algorithm. IEE Proceedings in Vision, Image and Signal Processing 141(3), 175–180 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lukáš Sekanina
    • 1
  • Zdeněk Vašíček
    • 1
  1. 1.Faculty of Information TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations