A Novel Mathematical Model for the Optimization of DNA–Chip Design and Its Implementation

  • Kornélia Danyi
  • Gabriella Kókai
  • József Csontos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3907)


A variety of recent achievements in the field of biology, chemistry and information technology have made possible the development of DNA chips. They allow us to analyze the sequences and functions of different genes simultaneously and detect small differences in those. They are source of tremendous amount of data in the field of Bioinformatics. Moreover, the engineering process of DNA chip requires the latest results of information technology, too. In this paper, we address the mathematical problem of the prediction the hybridization process on the chip surface. A novel in situ in silico approach is presented and the obtained results are discussed.


Simulated Annealing Dependent Parameter Near Neighbor Chip Design Simulated Annealing Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chiu, G.T., Shaw, J.: Optical lithography. IBM Journal of Research and Development 41 (January 24, 1997)Google Scholar
  2. 2.
    Chee, M., Yang, R., Hubbel, E., Berno, A., Huang, X., Stern, D., Winkler, J., Lockad, D., Morris, M.: SP.Fodor: Accessing genetic information with high-density dna arrays. Science 274, 610–613 (1996)CrossRefGoogle Scholar
  3. 3.
    Fodor, S., Rava, R., Huang, X., Pease, A., Holmes, C., Adams, C.: Multiplexed biochemical assays with biological chips. Nature 364, 555–556 (1993)CrossRefGoogle Scholar
  4. 4.
    Fodor, S., Read, J., Pissung, M., Stryer, L., Lu, A., Solas, D.: Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995), 767–773 (1991)CrossRefGoogle Scholar
  5. 5.
    Panjkovich, A., Melo, F.: Comparison of different melting temperature calculation methods for short dna sequences. Bioinformatics 21(6), 711–722 (2005)CrossRefGoogle Scholar
  6. 6.
    Panjkovich, A., Norambuena, T., Melo, F.: Dnamate: a consensus melting temperature prediction server for short dna sequences. Nucleic Acids Res. 33(suppl. 2), 570–572 (2005)CrossRefGoogle Scholar
  7. 7.
    Lee, I., Dombkowski, A., Athey, B.: Guidelines for incorporating non-perfectly matched oligonucleotides into target-specific hybridisation probes for a dna microarray. Nucleic Acids Research 32(2), 681–690 (2004)CrossRefGoogle Scholar
  8. 8.
    Rouillard, J.M., Zuker, M., Gulari, E.: Oligoarray 2.0: design of oligonucleotide probes for dna microarrays using a thermodinamic approach. Nucleic Acids Research 31(12), 3057–3062 (2003)CrossRefGoogle Scholar
  9. 9.
    Breslauer, K., Frank, R., Blocker, H., Marky, L.: Predicting dna duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA 83, 3746–3750 (1986)CrossRefGoogle Scholar
  10. 10.
    Freier, S., Kierzek, R., Jaeger, J., Sugimoto, N., Caruthers, M., Neilson, T., Turner, D.: Improved parameters for predictions of rna rna duplex stability. Proc. Natl. Acad. Sci. 83, 9373–9377 (1986)CrossRefGoogle Scholar
  11. 11.
    Wallace, R., Shaffer, J., Murphy, R., Bonner, J., Hirose, T., Itakura, K.: Hybridization of synthetic oligodeoxyribonucleotides to phi chi 174 dna: the effect of single base pair mismatch. Nucleic Acids Res. 6, 3543–3557 (1979)CrossRefGoogle Scholar
  12. 12.
    Howley, P., Israel, M., Law, M., Martin, M.: A rapid method for detecting and mapping homology between heterologous dnas. Evaluation of polyomavirus genomes. JBC 254, 4876–4883 (1979)Google Scholar
  13. 13.
    Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Berendsen, H., van der Spoel, D., van Drunen, R.: Gromacs: A message passing parallel md implementation. Comp. Phys. Comm. 91, 43–56 (1995)CrossRefGoogle Scholar
  15. 15.
    Sanbonmatsu, K.Y., Joseph, S., Tung, C.S.: Simulating movement of trna into the ribosome during decoding. In: PNAS 2005, vol. 102, pp. 15854–15859 (2005)Google Scholar
  16. 16.
    Inc., A.S.: Insight ii molecular modeling and simulation enviornment (2005)Google Scholar
  17. 17.
    For Macromolecular Modeling, N.R., Bioinformatics: Scalable molecular dynamics (2005) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kornélia Danyi
    • 1
  • Gabriella Kókai
    • 2
  • József Csontos
    • 3
  1. 1.Institute of InformaticsUniversity of SzegedSzegedHungary
  2. 2.Department of Programming SystemsFriedrich–Alexander UniversityErlangenGermany
  3. 3.Department of Biomedical SciencesCreighton UniversityOmahaUSA

Personalised recommendations