Finding Compact BDDs Using Genetic Programming

  • Ulrich Kühne
  • Nicole Drechsler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3907)


Binary Decision Diagrams (BDDs) can be used to design multiplexor based circuits. Unfortunately, the most commonly used kind of BDDs – ordered BDDs – has exponential size in the number of variables for many functions. In some cases, more general forms of BDDs are more compact. In constrast to the minimization of OBDDs, which is well understood, there are no heuristics for the construction of compact BDDs up to today. In this paper we show that compact BDDs can be constructed using Genetic Programming.


Genetic Programming Boolean Function Internal Node Target Function Binary Decision Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drechsler, R., Günther, W.: Towards One-Path Synthesis. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  2. 2.
    Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Comp. 35, 677–691 (1986)MATHCrossRefGoogle Scholar
  3. 3.
    Ajtai, M., Babai, L., Hajnal, P., Komlos, J., Pudlak, P., Rödl, V., Szemeredi, E., Turan, G.: Two lower bounds for branching programs. In: Symp. on Theory of Computing, pp. 30–38 (1986)Google Scholar
  4. 4.
    Bryant, R.: On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication. IEEE Trans. On Comp. 40, 205–213 (1991)CrossRefGoogle Scholar
  5. 5.
    Becker, B., Drechsler, R., Werchner, R.: On the relation between BDDs and FDDs. Technical Report 12/93, Universität Frankfurt, 12/93, Fachbereich Informatik (1993)Google Scholar
  6. 6.
    Kebschull, U., Schubert, E., Rosenstiel, W.: Multilevel logic synthesis based on functional decision diagrams. In: European Conf. on Design Automation, pp. 43–47 (1992)Google Scholar
  7. 7.
    Drechsler, R., Sarabi, A., Theobald, M., Becker, B., Perkowski, M.: Efficient representation and manipulation of switching functions based on ordered Kronecker functional decision diagrams. Technical Report 14/93, J.W.Goethe-University, Frankfurt (1993)Google Scholar
  8. 8.
    Ashar, P., Ghosh, A., Devadas, S., Newton, A.: Combinational and sequential logic verification using general binary decision diagrams. In: Int’l Workshop on Logic Synth. (1991)Google Scholar
  9. 9.
    Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: Int’l Workshop on Logic Synth, pp. 3a–1–3a–12 (1993)Google Scholar
  10. 10.
    Drechsler, R., Becker, B., Göckel, N.: A genetic algorithm for variable ordering of OBDDs. IEE Proceedings 143, 364–368 (1996)Google Scholar
  11. 11.
    Sakanashi, H., Higuchi, T., Iba, H., Kakazu, Y.: Evolution of binary decision diagrams for digital circuit design using genetic programming. In: ICES, pp. 470–481 (1996)Google Scholar
  12. 12.
    Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs is NP-complete. IEEE Trans. on Comp. 45, 993–1002 (1996)MATHCrossRefGoogle Scholar
  13. 13.
    Wegener, I.: Bdds – design, analysis, complexity, and applications. Discrete Applied Mathematics 138, 229–251 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Friedman, S., Supowit, K.: Finding the optimal variable ordering for binary decision diagrams. In: Design Automation Conf., pp. 348–356 (1987)Google Scholar
  15. 15.
    Buch, P., Narayan, A., Newton, A., Sangiovanni-Vincentelli, A.: On synthesizing pass transistor networks. In: Int’l Workshop on Logic Synth. (1997)Google Scholar
  16. 16.
    Ferrandi, F., Macii, A., Macii, E., Poncino, M., Scarsi, R., Somenzi, F.: Layoutoriented synthesis of PTL circuits based on BDDs. In: Int’l Workshop on Logic Synth., pp. 514–519 (1998)Google Scholar
  17. 17.
    Koza, J.: Genetic Programming - On the Programming of Computers by means of Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  18. 18.
    Keijzer, M., Merelo, J.J., Schoenauer, G.R., Evolving, M.: objects: a general purpose evolutionary computation library. Evolution Artificielle (2001)Google Scholar
  19. 19.
    Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.0. University of Colorado at Boulder (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ulrich Kühne
    • 1
  • Nicole Drechsler
    • 1
  1. 1.Institute of Computer ScienceUniversity of BremenBremenGermany

Personalised recommendations