Incorporating Biological Domain Knowledge into Cluster Validity Assessment

  • Nadia Bolshakova
  • Francisco Azuaje
  • Pádraig Cunningham
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3907)


This paper presents an approach for assessing cluster validity based on similarity knowledge extracted from the Gene Ontology (GO) and databases annotated to the GO. A knowledge-driven cluster validity assessment system for microarray data was implemented. Different methods were applied to measure similarity between yeast genes products based on the GO. This research proposes two methods for calculating cluster validity indices using GO-driven similarity. The first approach processes overall similarity values, which are calculated by taking into account the combined annotations originating from the three GO hierarchies. The second approach is based on the calculation of GO hierarchy-independent similarity values, which originate from each of these hierarchies. A traditional node-counting method and an information content technique have been implemented to measure knowledge-based similarity between genes products (biological distances). The results contribute to the evaluation of clustering outcomes and the identification of optimal cluster partitions, which may represent an effective tool to support biomedical knowledge discovery in gene expression data analysis.


Gene Ontology Validity Index Cluster Validity Index Gene Expression Data Analysis Saccharomyces Genome Database 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fitch, J., Sokhansanj, B.: Genomic engineering: Moving beyond DNA. Sequence to function. Proceedings of the IEEE 88, 1949–1971 (2000)CrossRefGoogle Scholar
  2. 2.
    Gat-Viks, I., Sharan, R., Shamir, R.: Scoring clustering solutions by their biological relevance. Bioinformatics 19, 2381–2389 (2003)CrossRefGoogle Scholar
  3. 3.
    Lee, S., Hur, J., Kim, Y.: A graph-theoretic modeling on go space for biological interpretation on gene clusters. Bioinformatics 20, 381–388 (2004)CrossRefGoogle Scholar
  4. 4.
    Goeman, J., van de Geer, S., de Kort, F., van Houwelingen, H.: A global test for groups of genes: testing association with a clinical outcome. Bioinformatics 20, 93–99 (2004)CrossRefGoogle Scholar
  5. 5.
    Raychaudhuri, S., Altman, R.: A literature-based method for assessing the functional coherence of a gene group. Bioinformatics 19, 396–401 (2003)CrossRefGoogle Scholar
  6. 6.
    Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.: Co-clustering of biological networks and gene expression data. Bioinformatics 18, S145–S154 (2002)Google Scholar
  7. 7.
    Sohler, F., Hanisch, D., Zimmer, R.: New methods for joint analysis of biological networks and expression data. Bioinformatics 20, 1517–1521 (2004)CrossRefGoogle Scholar
  8. 8.
    Khatri, P., Drǎghici, S.: Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21, 3587–3595 (2005)CrossRefGoogle Scholar
  9. 9.
    Bolshakova, N., Azuaje, F.: Cluster validation techniques for genome expression data. Signal Processing 83, 825–833 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Bolshakova, N., Azuaje, F.: Machaon CVE: cluster validation for gene expression data. Bioinformatics 19, 2494–2495 (2003)CrossRefGoogle Scholar
  11. 11.
    Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: 32nd Annual Meeting of the Association for Computational Linguistics, New Mexico State University, Las Cruces, New, Mexico, pp. 133–138 (1994)Google Scholar
  12. 12.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI), pp. 448–453 (1995)Google Scholar
  13. 13.
    Azuaje, F., Bodenreider, O.: Incorporating ontology-driven similarity knowledge into functional genomics: an exploratory study. In: Proceedings of the fourth IEEE Symposium on Bioinformatics and Bioengineering (BIBE 2004), pp. 317–324 (2004)Google Scholar
  14. 14.
    Wang, H., Azuaje, F., Bodenreider, O., Dopazo, J.: Gene expression correlation and gene ontology-based similarity: An assessment of quantitative relationships. In: Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, La Jolla-California, pp. 25–31. IEEE Press, Los Alamitos (2004)Google Scholar
  15. 15.
    Bolshakova, N., Azuaje, F., Cunningham, P.: A knowledge-driven approach to cluster validity assessment. Bioinformatics 21, 2546–2547 (2005)CrossRefGoogle Scholar
  16. 16.
    Speer, N., Spieth, C., Zell, A.: A memetic clustering algorithm for the functional partition of genes based on the Gene Ontology. In: Proceedings of the 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB 2004), pp. 252–259. IEEE Press, Los Alamitos (2004)Google Scholar
  17. 17.
    Speer, N., Spieth, C., Zell, A.: Functional grouping of genes using spectral clustering and gene ontology. In: Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN 2005), pp. 298–303. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  18. 18.
    Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T., Gabrielian, A., Landsman, D., Lockhart, D., Davis, R.: A genomewide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)CrossRefGoogle Scholar
  19. 19.
    Hubert, L., Schultz, J.: Quadratic assignment as a general data-analysis strategy. British Journal of Mathematical and Statistical Psychologie, 190–241 (1976)Google Scholar
  20. 20.
    Goodman, L., Kruskal, W.: Measures of associations for cross-validations. Journal of Ameracan Statistical Association, 732–764 (1954)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nadia Bolshakova
    • 1
  • Francisco Azuaje
    • 2
  • Pádraig Cunningham
    • 1
  1. 1.Department of Computer ScienceTrinity College DublinIreland
  2. 2.School of Computing and MathematicsUniversity of UlsterJordanstownUK

Personalised recommendations