An Algorithm for the Automated Verification of DNA Supercontig Assemblies

  • Nikola Stojanovic
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3907)


Genome sequencing has achieved tremendous progress over the last few years. However, along with the speedup of the process and an ever increasing volume of data there are continuing concerns about the quality of the assembled sequence. Many genomes have been sequenced only to a draft, leaving the data in a series of more–or–less organized scaffolds, and many feature a small, but not negligible number of misassembled pieces. In this paper we present a new method for automated flagging of potential trouble spots in large assembled supercontigs. It can be incorporated into existing quality control pipelines and lead to a considerable improvement in the sensitivity to certain types of errors.


Actual Coverage False Positive Ratio International Human Genome Sequencing Consortium Duplicate Area Coverage Redundancy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dunham, I., Shimizu, N., Roe, B., et al.: The DNA sequence of human chromosome 22. Nature 402, 489–495 (1999)CrossRefGoogle Scholar
  2. 2.
    Hattori, M., Fujiyama, A., Taylor, T., et al.: The DNA sequence of human chromosome 21. Nature 405, 311–319 (2000)CrossRefGoogle Scholar
  3. 3.
    Havlak, P., Chen, R., Durbin, K.J., Egan, A., Ren, Y., Song, X.-Z., Weinstock, G.M., Gibbs, R.A.: The Atlas genome assembly system. Genome Res. 14, 721–732 (2004)CrossRefGoogle Scholar
  4. 4.
    Huang, X., Wang, J., Aluru, S., Yang, S.-P., Hillier, L.: PCAP: A wholegenome assembly program. Genome Res. 13, 2164–2170 (2003)CrossRefGoogle Scholar
  5. 5.
    International Human Genome Mapping Consortium: A physical map of the human genome. Nature 409, 934–941 (2001)Google Scholar
  6. 6.
    International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001)Google Scholar
  7. 7.
    International Human Genome Sequencing Consortium: Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004)Google Scholar
  8. 8.
    Jaffe, D.B., Butler, J., Gnerre, S., Mauceli, E., Lindblad-Toh, K., Mesirov, J.P., Zody, M.C., Lander, E.S.: Whole–genome sequence assembly for mammalian genomes: Arachne2. Genome Res. 13, 91–96 (2003)CrossRefGoogle Scholar
  9. 9.
    Kent, W.J., Haussler, D.: Assembly of the working draft of the human genome with GigAssembler. Genome Res. 11, 1541–1548 (2001)CrossRefGoogle Scholar
  10. 10.
    Mouse Genome Sequencing Consortium: Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002)Google Scholar
  11. 11.
    Mullikin, J., Ning, Z.: The Phusion assembler. Genome Res. 13, 81–90 (2003)CrossRefGoogle Scholar
  12. 12.
    Rat Genome Sequencing Consortium: Genome sequence of the brown Norway rat yields insights into mammalian evolution. Nature 428, 493–521 (2004)Google Scholar
  13. 13.
    Stojanovic, N., Chang, J.L., Lehoczky, J., Zody, M.C., Dewar, K.: Identification of mixups among DNA sequencing plates. Bioinformatics 18, 1418–1426 (2002)CrossRefGoogle Scholar
  14. 14.
    Venter, J., Adams, M., Myers, E., et al.: The sequence of the human genome. Science 291, 1304–1351 (2001)CrossRefGoogle Scholar
  15. 15.
    Weber, J.L., Myers, E.W.: Human whole–genome shotgun sequencing. Genome Res. 7, 401–409 (1997)Google Scholar
  16. 16.
    Xu, J., Gordon, J.I.: MapLinker: a software tool that aids physical map– linked whole genome shotgun assembly. Bioinformatics 21, 1265–1266 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nikola Stojanovic
    • 1
  1. 1.Department of Computer Science and EngineeringThe University of Texas at ArlingtonArlingtonUSA

Personalised recommendations