Skip to main content

Mining Structural Databases: An Evolutionary Multi-Objetive Conceptual Clustering Methodology

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3907))

Abstract

The increased availability of biological databases containing representations of complex objects permits access to vast amounts of data. In spite of the recent renewed interest in knowledge-discovery techniques (or data mining), there is a dearth of data analysis methods intended to facilitate understanding of the represented objects and related systems by their most representative features and those relationship derived from these features (i.e., structural data). In this paper we propose a conceptual clustering methodology termed EMO-CC for Evolutionary Multi-Objective Conceptual Clustering that uses multi-objective and multi-modal optimization techniques based on Evolutionary Algorithms that uncover representative substructures from structural databases. Besides, EMO-CC provides annotations of the uncovered substructures, and based on them, applies an unsupervised classification approach to retrieve new members of previously discovered substructures. We apply EMO-CC to the Gene Ontology database to recover interesting substructures that describes problems from different points of view and use them to explain inmuno-inflammatory responses measured in terms of gene expression profiles derived from the analysis of longitudinal blood expression profiles of human volunteers treated with intravenous endotoxin compared to placebo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Siripurapu, V., Meth, J., Kobayashi, N., Hamaguchi, M.: Dbc2 significantly influences cell-cycle, apoptosis, cytoskeleton and membrane-trafficking pathways. Journal of Molecular Biology 346 (2005) 83–89

    Article  Google Scholar 

  2. Nikitin, A., Egorov, S., Daraselia, N., Mazo, I.: Pathway studio–the analysis and navigation of molecular networks. Bioinformatics 19 (2003) 2155–2157

    Article  Google Scholar 

  3. Consortium, T.G.O.: Gene ontology: tool for the unification of biology. Nature Genet 25, 25–29 (2000)

    Article  Google Scholar 

  4. Cook, D., Holder, L., Su, S., Maglothin, R., Jonyer, I.: Structural mining of molecular biology data. IEEE Engineering in Medicine and Biology, special issue on Advances in Genomics 4, 67–74 (2001)

    Google Scholar 

  5. Mitchell, T.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  6. Ruspini, E., Zwir, I.: Automated generation of qualitative representations of complex object by hybrid soft-computing methods. In: Pal, S., Pal, A. (eds.) Pattern Recognition: From Classical to Modern Approaches, pp. 453–474. World Scientific Company, Singapore (2001)

    Chapter  Google Scholar 

  7. Back, T., Fogel, D., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. IOP Publishing Ltd., Bristol (1997)

    Google Scholar 

  8. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  9. Coello-Coello, C., Veldhuizen, D.V., Lamont, G.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  10. Romero-Zaliz, R., Cord´on, O., Rubio-Escudero, C., Zwir, I., Cobb, J. A multiobjective evolutionary conceptual clustering methodology for gene annotation from networking databases (Submited)

    Google Scholar 

  11. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley- Interscience, Chichester (2000)

    Google Scholar 

  12. Der, G., Everitt, B.: A handbook of statistical analyses using SAS. CHAPMANHALL (1996)

    Google Scholar 

  13. Cheeseman, P., Oldfors, R.W.: Selecting models from data. Springer, Heidelberg (1994)

    MATH  Google Scholar 

  14. Bezdek, J.: Fuzzy clustering. In: Ruspini, E., Bonissone, P., Pedrycz, W. (eds.) Handbook of Fuzzy Computation, pp. f6.1:1–f6.6:19. Institute of Physics Press (1998)

    Google Scholar 

  15. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  16. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  17. Goldberg, D.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, London (1989)

    MATH  Google Scholar 

  18. Jaccard, P.: The distribution of flora in the alpine zone. The New Phytologist 11, 37–50 (1912); Mining Structural Databases: An EMO-CC Methodology 171

    Article  Google Scholar 

  19. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3, 257–271 (1999)

    Article  Google Scholar 

  20. Romero-Zaliz, R., Zwir, I., Ruspini, E.: Generalized Analysis of Promoters (GAP): A method for DNA sequence description. In: Applications of Multi-Objective Evolutionary Algorithms, pp. 427–450. World Scientific, Singapore (2004)

    Google Scholar 

  21. Gasch, A., Eisen, M.: Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biology 3 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Romero-Zaliz, R., Rubio-Escudero, C., Cordón, O., Harari, O., del Val, C., Zwir, I. (2006). Mining Structural Databases: An Evolutionary Multi-Objetive Conceptual Clustering Methodology. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2006. Lecture Notes in Computer Science, vol 3907. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732242_15

Download citation

  • DOI: https://doi.org/10.1007/11732242_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33237-4

  • Online ISBN: 978-3-540-33238-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics