Advertisement

Challenges for Artificial Immune Systems

  • Jon Timmis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3931)

Abstract

In this position paper, we argue that the field of Artificial Immune Systems (AIS) has reached an impass. For many years, immune inspired algorithms, whilst having some degree of success, have been limited by the lack of theorectical advances, the adoption of a limited immune inspired approach and the limited application of AIS to hard problems.

Keywords

Negative Selection Clonal Selection Shape Space Immune Network Clonal Selection Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stepney, S., Clark, J., Tyrrell, A., Johnson, C., Timmis, J., Partridge, D., Adamatsky, A., Smith, R.: Journeys in non-classical computation: A grand challenge for computing research. Challenge Report 7, National E-Science Centre, University of Edinburgh (2003)Google Scholar
  2. 2.
    de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach. Springer, Heidelberg (2002)MATHGoogle Scholar
  3. 3.
    Burnet, F.: The Clonal Selection Theory of Acquired Immunity. Cambridge University Press, Cambridge (1959)CrossRefGoogle Scholar
  4. 4.
    Jerne, N.K.: Towards a network theory of the immune system. Annals Immunol 125C, 373–389 (1974)Google Scholar
  5. 5.
    Aberola-Ila, J., Hogquist, K.A., Swan, K.A., Bevan, M.J., Perlmutter, R.M.: Positive and negative selection invoke distinct signaling pathways. J. Exp. Med 184, 9–18 (1996)CrossRefGoogle Scholar
  6. 6.
    Stepney, S., Smith, R., Timmis, J., Tyrrell, A.: Towards a Conceptual Framework for Artificial Immune Systems. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 53–64. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Janeway, C., Medzhitov, R.: Innate immune recognition. Ann. Rev. Immunol. 20, 197–216 (2002)CrossRefGoogle Scholar
  8. 8.
    Janeway Jr., C.A., Paul, T.: Immunobiology: The Immune System in Health and Disease, 3rd edn. Garland Publishing, New York (1997)Google Scholar
  9. 9.
    Berek, C., Ziegner, M.: The maturation of the immune response. Immunology Today 14, 200–402 (1993)CrossRefGoogle Scholar
  10. 10.
    de Castro, L., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation, Special Issue on Artificial Immune Systems 6, 239–251 (2002)CrossRefGoogle Scholar
  11. 11.
    Cutello, V., Nicosia, G., Parvone, M.: Exploring the capability of immune algorithms: A characterisation of hypermutation operators. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 263–276. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Garrett, S.: Parameter-free, Adaptive Clonal Selection. In: Congress on Evolutionary Computing, CEC. IEEE, Los Alamitos (2004)Google Scholar
  13. 13.
    Watkins, A.: An Artificial Immune Recognition System. Mississippi State University. MSc Thesis (2001)Google Scholar
  14. 14.
    Watkins, A., Timmis, J.: Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifi. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 427–438. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Watkins, A., Xintong, B., Phadke, A.: Parallelizing an Immune-Inspired Algorithm for Efficient Pattern Recognition. In: Intelligent Engineering Systems through Artificial Neural Networks: Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Complex Systems and Artificial Life, pp. 224–230. ASME Press (2003)Google Scholar
  16. 16.
    Kim, J., Bentley, P.J.: Immune memory in the dynamic clonal selection algorithm. In: Timmis, J., Bentley, P.J. (eds.) Proceedings of the 1st International Conference on Artificial Immune Systems ICARIS, University of Kent at Canterbury, University of Kent at Canterbury Printing Unit, pp. 59–67 (2002)Google Scholar
  17. 17.
    Secker, A., Freitas, A., Timmis, J.: AISEC: An Artificial Immune System for Email Classification. In: Proceedings of the Congress on Evolutionary Computation, pp. 131–139. IEEE, Los Alamitos (2003)Google Scholar
  18. 18.
    de Castro, L.N., Von Zuben, F.J.: aiNet: An Artificial Immune Network for Data Analysis. In: Idea Group Publishing, USA, pp. 231–259 (2001)Google Scholar
  19. 19.
    de Castro, L., Timmis, J.: Hierarchy and convergence of immune networks: Basic ideas and preliminary results. In: Timmis, J., Bentley, P.J. (eds.) Proceedings of the 1st International Conference on Artificial Immune Systems ICARIS, University of Kent at Canterbury, University of Kent at Canterbury Printing Unit, pp. 231–240 (2002)Google Scholar
  20. 20.
    Timmis, J., Neal, M.J.: A Resource Limited Artificial Immune System for Data Analysis. In: Research and Development in Intelligent Systems XVII, Proceedings of ES 2000, Cambridge, UK, pp. 19–32 (2000)Google Scholar
  21. 21.
    Knight, T., Timmis, J.: AINE: An immunological approach to data mining. In: Proc. of the IEEE International Conference on Data Mining, pp. 297–304 (2001)Google Scholar
  22. 22.
    Neal, M.: An Artificial Immune System for Continuous Analysis of Time-Varying Data. In: Timmis, J., Bentley, P. (eds.) Proceedings of the First International Conference on Artificial Immune Systems ICARIS, Canterbury, UK, UKC, pp. 76–85 (2002)Google Scholar
  23. 23.
    Bersini, H.: Immune network and adaptive control. In: Proc. First European Conference on Artificial Life, pp. 217–226. MIT Press, Cambridge (1991)Google Scholar
  24. 24.
    Ishida, Y.: Active diagnosis by self-organisation: An approach by the immune network metaphor. In: Proceedings of the International Joint Conference on Artificial Intelligence, Nagoya, Japan, pp. 1084–1089. IEEE, Los Alamitos (1997)Google Scholar
  25. 25.
    Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-Nonself Discrimination in a Computer. In: Proc. of the IEEE Symposium on Research in Security and Privacy, pp. 202–212 (1994)Google Scholar
  26. 26.
    Forrest, S., Hofmeyr, S., Somayaji, A.: Computer Immunology. Communications of the ACM 40, 88–96 (1997)CrossRefGoogle Scholar
  27. 27.
    Esponda, F., Forrest, S., Helman, P.: A formal framework for positive and negative detection schemes. IEEE Transactions on Systems, Man and Cybernetics Part B 34, 357–373 (2004)CrossRefGoogle Scholar
  28. 28.
    Stibor, T., Bayarou, K., Eckert, C.: An investigation of R-chunk detector generation on higher alphabets. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 26–30. Springer, Heidelberg (2004)Google Scholar
  29. 29.
    Timmis, J., de Lemos, R., Ayara, M., Duncan, R.: Towards immune inspired fault tolerance in embedded systems. In: Wang, L., Rajapakse, J., Fukushima, K., Lee, S., Yao, X. (eds.) Proceedings of 9th International Conference on Neural Information Processing, pp. 1459–1463. IEEE, Los Alamitos (2002)Google Scholar
  30. 30.
    Kim, J., Bentley, P.J.: A model of gene library evolution in the dynamic clonal selection algorithm. In: Timmis, J., Bentley, P.J. (eds.) Proceedings of the 1st International Conference on Artificial Immune Systems ICARIS, University of Kent at Canterbury, University of Kent at Canterbury Printing Unit, pp. 182–189 (2002)Google Scholar
  31. 31.
    Stibor, T., Mohr, P., Timmis, J., Eckert, C.: Is negative selection algorithm suitable for anomaly detection? In: Proceedings of GECCO 2005. LNCS. Springer, Heidelberg (2005)Google Scholar
  32. 32.
    Hart, E., Ross, P.: Studies on the implications of shape-space models for idiotypic networks. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 413–426. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  33. 33.
    Bersini, H.: Reinforcement and recruitment learning for adaptive process control. In: Proc. Int. Fuzzy Association Conference (IFAC/IFIP/IMACS) on Artificial Intelligence in Real Time Control, pp. 331–337 (1992)Google Scholar
  34. 34.
    Bersini, H., Varela, F.: The Immune Learning Mechansims: Recruitment, Reinforcement and their Applications. Chapman Hall, Boca Raton (1994)Google Scholar
  35. 35.
    Hightower, R.R., Forrest, S.A., Perelson, A.S.: The evolution of emergent organization in immune system gene libraries. In: Eshelman, L.J. (ed.) Proc. 6th Int. Conf. Genetic Algorithms, pp. 344–350. Morgan Kaufmann, San Francisco (1995)Google Scholar
  36. 36.
    Freitas, A.A., Timmis, J.: Revisiting the Foundations of Artificial Immune Systems: A Problem Oriented Perspective. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 229–241. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  37. 37.
    Segal, L., Cohen, I. (eds.): Design Principles for the Immune System and Other Distributed Systems. Oxford University Press, Oxford (2001)Google Scholar
  38. 38.
    Villalobos-Arias, M., Coello, C.A.C., Hernandez-Lerma, O.: Convergence analysis of a multiobjective artificial immune system algorithm. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 226–235. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  39. 39.
    Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Oxford University Press, Oxford (1982)MATHGoogle Scholar
  40. 40.
    Hone, A., Kelsey, J.: Optima, extrema, and artificial immune systems. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 89–98. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  41. 41.
    Farmer, J.D., Packard, N.H., Perelson, A.S.: The Immune System, Adaptation, and Machine Learning. Physica D, 187–204 (1986)Google Scholar
  42. 42.
    Brzezniak, Z., Zastawniak, T.: Basic Stochastic Processes. Springer, Heidelberg (1999)CrossRefMATHGoogle Scholar
  43. 43.
    Besendovsky, H.O., del Ray, A.: Immune-Neuro-Endocrine Interactions: Facts and Hypotheses. Nature 249, 356–358 (1996)CrossRefGoogle Scholar
  44. 44.
    Neal, M., Timmis, J.: Once more unto the breach... towards artificial homeostasis? In: Recent Advances in Biologically Inspired Computing, IGP (2004)Google Scholar
  45. 45.
    Simth, W.R.: Qualitative mathematical models of endocrine systems. Am. Journal of Physiology 245, 473–477 (1983)Google Scholar
  46. 46.
    Liu, B., Deng, G.: An improved mathematical model of hormone secretion in the hypothalamo-pituitary-gonadal axis in man. J. Theor. Biol. 150, 51–58 (1991)CrossRefGoogle Scholar
  47. 47.
    Sieburg, H.B., Clay, O.K.: The cellular device machine development system for modeling biology on the computer. Complex Systems 5, 575–601 (1991)MATHGoogle Scholar
  48. 48.
    Peleg, M., Yeh, I., Altman, R.B.: Modeling biological processes using workflow and petri net models. Bioinformatics 18, 825–837 (2002)CrossRefGoogle Scholar
  49. 49.
    Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways representation and simulation on hybrid functional petri net. Silico Biology 3, 389–404 (2003)Google Scholar
  50. 50.
    Kuttler, C., Niehren, J., Blossey, R.: Gene regulation in the pi calculus: Simulating cooperativity at the lambda switch. In: Proc. Concurrent Models in Molecular Biology, Bioconcur., vol. 04 (2004)Google Scholar
  51. 51.
    Phillips, A., Cardelli, L.: A correct abstract machine for the stochastic pi-calculus. In: Proc Concurrent Models in Molecular Biology (BIOCONCUR 2004). ENTCS (2004)Google Scholar
  52. 52.
    Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.: Bioambients: An abstraction for biological compartments. Theoretical Computer Science (Special Issue on Computational Methods in Systems Biology) 325, 141–167 (2004)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jon Timmis
    • 1
  1. 1.Department of Computer Science and Department of ElectronicsUniversity of YorkHeslington, York

Personalised recommendations