An Evolution Hypothesis of Bacterial Populations

  • Bruno Apolloni
  • Alberto Clivio
  • Simone Bassis
  • Sabrina Gaito
  • Dario Malchiodi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3931)


We propose importing results from monotone game theory to model the evolution of a bacterial population under antibiotic attack. This allows considering the bacterium aging as a relevant phenomenon moving the evolution far away from the usual linear predator-prey paradigms. We obtain an almost nonparametric aging mechanism based on a thresholding operation, as an elementary intelligent operation, that may explain some typical patterns of the population evolution. In this paper we discuss both theoretical aspects and the results of a standardized procedure.


Cellular Automaton Bacterial Population Evolution Hypothesis Single Bacterium Strength Increment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garrett, S.: Parameter-free, adaptive clonal selection. In: Congress on Evolutionary Computing, CEC. IEEE, Los Alamitos (2004)Google Scholar
  2. 2.
    Stewart, E., Madden, R., Paul, G., Taddei, F.: Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology 3, 295–300 (2005)CrossRefGoogle Scholar
  3. 3.
    Capasso, V.: Mathematical Structures of Epidemic Systems. Springer, New York (1992)MATHGoogle Scholar
  4. 4.
    Prikrylova, D., J’ilek, M., Waniewski, J.: Mathematical Modeling of the Immune Response. CRC Press, Boca Raton (1992)MATHGoogle Scholar
  5. 5.
    Perelson, A.S.: Modelling viral and immune system dynamics. Nature Rev. Immunol. 2, 28–36 (2002)CrossRefGoogle Scholar
  6. 6.
    McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Castiglione, F.: A network of cellular automata for the simulation of the immune system. International Journal Morden Physics C 10, 677–686 (1999)CrossRefGoogle Scholar
  8. 8.
    Blackwell, D., Girshick, M.A.: Theory of Games and Statistical Decisions. Dover Publications, Inc., New York (1979)MATHGoogle Scholar
  9. 9.
    Apolloni, B., Bassis, S., Gaito, S., Malchiodi, D., Zoppis, I.: Facing indeterminacy for winning a monotone game. Information Sciences (2005) (to appear)Google Scholar
  10. 10.
    Apolloni, B., Bassis, S., Gaito, S., Malchiodi, D.: Cooperative games in a stochastic environment. In: Apolloni, B., Kurfess, F. (eds.) From synapses to rules. Discovering symbolic rules from neural processed data, pp. 75–86. Kluwer Academic/Plenum Publishers, New York (2002)Google Scholar
  11. 11.
  12. 12.
    Rumelhart, D.E.: Parallel Distributed Processing, vol. 1. MIT Press, Cambridge (1986)Google Scholar
  13. 13.
    Wolfram, S.: Theory and Applications of Cellular Automata. World Press (1986)Google Scholar
  14. 14.
    Ferber, J.: Multi-Agents Systems. Addison Wesley, Reading (1999)MATHGoogle Scholar
  15. 15.
    Kleinstein, S.H., Seiden, P.E.: Simulating the immune system. IEEE Computing in Science and Engineering 2, 69–77 (2000)CrossRefGoogle Scholar
  16. 16.
    Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Turner, T., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry 28, 165–178 (2004)CrossRefMATHGoogle Scholar
  18. 18.
    Regev, A., Shapiro, E.: Cells as computation. Nature, 343–419 (2002)Google Scholar
  19. 19.
    Stoiber, H., Clivio, A., Dierich, M.P.: Role of complement in hiv infection. Annual Review of Immunology 15, 649–674 (1997)CrossRefGoogle Scholar
  20. 20.
    Dierich, M.P., Stoiber, H., Clivio, A.: A complementary aids vaccine. Nature Medicine 2, 153–155 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Bruno Apolloni
    • 1
  • Alberto Clivio
    • 2
  • Simone Bassis
    • 3
  • Sabrina Gaito
    • 1
  • Dario Malchiodi
    • 1
  1. 1.Dipartimento di Scienze dell’InformazioneUniversità degli Studi di MilanoMilanoItaly
  2. 2.Dipartimento di Scienze Precliniche Lita VialbaUniversità degli Studi di MilanoMilanoItaly
  3. 3.Dipartimento di Matematica “Federigo Enriques”Università degli Studi di MilanoMilanoItaly

Personalised recommendations