Skip to main content

An Evolution Hypothesis of Bacterial Populations

  • Conference paper
Book cover Neural Nets (WIRN 2005, NAIS 2005)

Abstract

We propose importing results from monotone game theory to model the evolution of a bacterial population under antibiotic attack. This allows considering the bacterium aging as a relevant phenomenon moving the evolution far away from the usual linear predator-prey paradigms. We obtain an almost nonparametric aging mechanism based on a thresholding operation, as an elementary intelligent operation, that may explain some typical patterns of the population evolution. In this paper we discuss both theoretical aspects and the results of a standardized procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Garrett, S.: Parameter-free, adaptive clonal selection. In: Congress on Evolutionary Computing, CEC. IEEE, Los Alamitos (2004)

    Google Scholar 

  2. Stewart, E., Madden, R., Paul, G., Taddei, F.: Aging and death in an organism that reproduces by morphologically symmetric division. PLoS Biology 3, 295–300 (2005)

    Article  Google Scholar 

  3. Capasso, V.: Mathematical Structures of Epidemic Systems. Springer, New York (1992)

    MATH  Google Scholar 

  4. Prikrylova, D., J’ilek, M., Waniewski, J.: Mathematical Modeling of the Immune Response. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  5. Perelson, A.S.: Modelling viral and immune system dynamics. Nature Rev. Immunol. 2, 28–36 (2002)

    Article  Google Scholar 

  6. McCulloch, W., Pitts, W.: A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castiglione, F.: A network of cellular automata for the simulation of the immune system. International Journal Morden Physics C 10, 677–686 (1999)

    Article  Google Scholar 

  8. Blackwell, D., Girshick, M.A.: Theory of Games and Statistical Decisions. Dover Publications, Inc., New York (1979)

    MATH  Google Scholar 

  9. Apolloni, B., Bassis, S., Gaito, S., Malchiodi, D., Zoppis, I.: Facing indeterminacy for winning a monotone game. Information Sciences (2005) (to appear)

    Google Scholar 

  10. Apolloni, B., Bassis, S., Gaito, S., Malchiodi, D.: Cooperative games in a stochastic environment. In: Apolloni, B., Kurfess, F. (eds.) From synapses to rules. Discovering symbolic rules from neural processed data, pp. 75–86. Kluwer Academic/Plenum Publishers, New York (2002)

    Google Scholar 

  11. Tool, B.S.M. (2005), http://laren.usr.dsi.unimi.it/Batteri/index.html

  12. Rumelhart, D.E.: Parallel Distributed Processing, vol. 1. MIT Press, Cambridge (1986)

    Google Scholar 

  13. Wolfram, S.: Theory and Applications of Cellular Automata. World Press (1986)

    Google Scholar 

  14. Ferber, J.: Multi-Agents Systems. Addison Wesley, Reading (1999)

    MATH  Google Scholar 

  15. Kleinstein, S.H., Seiden, P.E.: Simulating the immune system. IEEE Computing in Science and Engineering 2, 69–77 (2000)

    Article  Google Scholar 

  16. Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  17. Turner, T., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry 28, 165–178 (2004)

    Article  MATH  Google Scholar 

  18. Regev, A., Shapiro, E.: Cells as computation. Nature, 343–419 (2002)

    Google Scholar 

  19. Stoiber, H., Clivio, A., Dierich, M.P.: Role of complement in hiv infection. Annual Review of Immunology 15, 649–674 (1997)

    Article  Google Scholar 

  20. Dierich, M.P., Stoiber, H., Clivio, A.: A complementary aids vaccine. Nature Medicine 2, 153–155 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Apolloni, B., Clivio, A., Bassis, S., Gaito, S., Malchiodi, D. (2006). An Evolution Hypothesis of Bacterial Populations. In: Apolloni, B., Marinaro, M., Nicosia, G., Tagliaferri, R. (eds) Neural Nets. WIRN NAIS 2005 2005. Lecture Notes in Computer Science, vol 3931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11731177_30

Download citation

  • DOI: https://doi.org/10.1007/11731177_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33183-4

  • Online ISBN: 978-3-540-33184-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics