Neural Nets pp 132-139 | Cite as

Clustering Causal Relationships in Genes Expression Data

  • Sergio Pozzi
  • Italo Zoppis
  • Giancarlo Mauri
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3931)


In this paper we apply a strategy to cluster gene expression data. In order to identify causal relationships among genes, we apply a pruning procedure [Chen et al., 1999] on the basis of the statistical cross-correlation function between couples of genes’ time series. Finally we try to isolate genes’ patterns in groups with positive causal relationships within groups and negative causal relation among groups. With this aim, we use a simple recursive clustering algorithm [Ailon et al., 2005].


Gene Expression Data Boolean Variable Correlation Cluster Cross Correlation Matrix Cluster Gene Expression Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ailon et al., 2005]
    Ailon, N., Charikar, M., Newman, A.: Aggregating Inconsistent Information: Ranking and Clustering. In: Proceedings of STOC 2005 (2005) (to appear)Google Scholar
  2. [Bansal, 2002]
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. In: Proceedings of the 43rd IEEE FOCS, pp. 238–247 (2002)Google Scholar
  3. [Chaitanya, 2004]
    Chaitanya, S.: Correlation clustering: maximizing agreements via semidefinite programming. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms SODA 2004, pp. 526–527 (2004)Google Scholar
  4. [Charikar et al., 2003]
    Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. To appear in Proceedings of the 44rd IEEE FOCS (2003)Google Scholar
  5. [Chen et al., 1999]
    Chen, T., Filkov, V., Skiena, S.: Identifying gene regulatory networks from experimental data. In: Proceedings of the third annual international conference on Computational molecular biology, pp. 94–103 (1999)Google Scholar
  6. [Cho et al., 1998]
    Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T., Gabrielian, A., Landsman, D., Lockhart, D., Davis, R.: A genomic-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell 2, 65–73 (1998)CrossRefGoogle Scholar
  7. [Eisen and Brown, 1999]
    Eisen, M., Brown, P.: Dna arrays for analysis of gene expression. Methods in Enzymology 303, 179–205 (1999)CrossRefGoogle Scholar
  8. [Eisen et al., 1998]
    Eisen, M., Spellman, P., Brown, P., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proceedings of National Academy of Sciences 95, 14863–14868 (1998)CrossRefGoogle Scholar
  9. [Góemans et al., 1995]
    Goemans, M., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems. Journal of the ACM 42, 1115–1145 (1995)CrossRefMATHGoogle Scholar
  10. [Liang S. and R., 1998]
    Liang, S., Fuhrman, S., Somugyi, R.: Reveal: a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposium Biocomputing 1998, pp. 18–29 (1998)Google Scholar
  11. [Pozzi et al., 2005]
    Pozzi, S., Della Vedova, G., Mauri, G.: An explicit upper bound for the approximation ratio of the maximum gene regulatory network problem. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 1–8. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. [Thieffry and Thomas, 1998]
    Thieffry, D., Thomas, R.: Qualitative analysis of gene networks. In: Pacific Symposium Biocomputing 1998, pp. 77–87 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sergio Pozzi
    • 1
  • Italo Zoppis
    • 1
  • Giancarlo Mauri
    • 1
  1. 1.DISCoUniv. Milano-BicoccaMilanoItaly

Personalised recommendations