Advertisement

Intelligent Predictive Control of Micro Heat Exchanger

  • Mehdi Galily
  • Farzad Habibipour Roudsari
  • Masoum Fardis
  • Ali Yazdian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3931)

Abstract

An intelligent predictive control to temperature control of a micro heat exchanger is addressed. First, the dynamics of the micro heat exchanger is identified using a locally linear model. Then, the predictive control strategy based on this model of the plant is applied to provide set point tracking of the output of the plant.

Keywords

Heat Exchanger Model Predictive Control Prediction Horizon Predictive Controller Validity Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Camacho, E.F.: Model predictive control. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Garcia, C.E., Prett, D.M., Morari, M.: Model predictive control: theory and practice- a survey. Automatica 25(3), 335–348 (1989)CrossRefMATHGoogle Scholar
  3. 3.
    Badgwell, A.B., Qin, S.J.: Review of nonlinear model predictive control applications. In: Kouvaritakis, B., Cannon, M. (eds.) Nonlinear predictive control theory and practice. IEE Control Series, pp. 3–32 (2001)Google Scholar
  4. 4.
    Parker, R.S., Gatzke, E.P., Mahadevan, R., Meadows, E.S., Doyle, F.J.: Nonlinear model predictive control: issues and applications. In: Kouvaritakis, B., Cannon, M. (eds.) Nonlinear predictive control theory and practice. IEE Control Series, pp. 34–57 (2001)Google Scholar
  5. 5.
    Babuska, R., Botto, M.A., Costa, J.S.D., Verbruggen, H.B.: Neural and fuzzy modeling on nonlinear predictive control, a comparison study. Computatioinal Engineering in Systems Science (July 1996)Google Scholar
  6. 6.
    Nelles, O.: Nonlinear system identification: from classical approach to neuro-fuzzy identification. Springer, Heidelberg (2001)CrossRefMATHGoogle Scholar
  7. 7.
    Narendra, K.S., Parthasarathy, K.: Identification and control of dynamic systems using neural networks. IEEE Transactions on Neural Networks 1, 4–27 (1990)CrossRefGoogle Scholar
  8. 8.
    Jalili-Kharaajoo, M., Araabi, B.N.: Neural network control of a heat exchanger pilot plant. To appear in IU Journal of Electrical and Electronics Engineering (2004)Google Scholar
  9. 9.
    Brander, J., Fichtner, M., Schygulla, U., Schubert, K.: Improving the efficiency of micro heat exchangers and reactors. In: Irven, R. (Hrsg.) Micro reaction Technology: 4th International Conference, AIChE Spring Nat. Meeting, Atlanta, Ga., March 5-9 (2000)Google Scholar
  10. 10.
    Stief, T., Langer, O.U., Schuber, K.: Numerical investigations on optimal heat conductivity in micro heat exchangers. In: Irven, R (Hrsg.) Micro reaction Technology: 4th International Conference, AIChE Spring Nat. Meeting, Atlanta, Ga., March 5-9 (2000)Google Scholar
  11. 11.
    Nelles, O.: Nonlinear system identification: From classical approaches to neural networks and fuzzy models. Springer, Heidelberg (2001)CrossRefMATHGoogle Scholar
  12. 12.
    Nelles, O.: Local linear model tree for on-line identification of time variant nonlinear dynamic systems. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996, vol. 1112. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mehdi Galily
    • 1
  • Farzad Habibipour Roudsari
    • 1
  • Masoum Fardis
    • 1
  • Ali Yazdian
    • 1
  1. 1.Iran Telecom Research Center (ITRC), Ministry of ICTTehranIran

Personalised recommendations