Advertisement

R-Charon, a Modeling Language for Reconfigurable Hybrid Systems

  • Fabian Kratz
  • Oleg Sokolsky
  • George J. Pappas
  • Insup Lee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)

Abstract

This paper describes the modeling language R-Charon as an extension for architectural reconfiguration to the existing distributed hybrid system modeling language Charon. The target application domain of R-Charon includes but is not limited to modular reconfigurable robots and large-scale transportation systems.While largely leaving the Charon syntax and semantics intact, R-Charon allows dynamic creation and destruction of components (agents) as well as of links (references) between the agents. As such,R-Charon is the first formal, hybrid automata based modeling language which also addresses dynamic reconfiguration. We develop and present the syntax and operational semantics for R-Charon on three levels: behavior (modes), structure (agents) and configuration (system).

Keywords

Hybrid System Modeling Language Global Variable Operational Semantic Discrete Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fromherz, M.P.J., Crawford, L.S., Hindi, H.A.: Coordinated control for highly reconfigurable systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, p. 1. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular specification of hybrid systems in Charon. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 6–19. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Grosu, R., Lee, I., Sokolsky, O.: Compositional modeling and refinement for hierarchical hybrid systems. Journal of Logic and Algebraic Programming (to appear)Google Scholar
  4. 4.
    Cuijpers, P.J.L., Reniers, M.A.: Hybrid process algebra. Journal of Logic and Algebraic Programming 62(2), 191–245 (2005)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Lynch, N.A., Segala, R., Vaandrager, F.W.: Hybrid I/O automata. Information and Computation 185(1), 105–157 (2003)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Rounds, W.C., Song, H.: The φ-calculus: A language for distributed control of reconfigurable embedded systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, p. 435. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Varaiya, P.: Smart cars on smart roads: problems of control. IEEE Transactions on Automatic Control 38(2), 195 (1993)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Zelinski, S., Koo, T.J., Sastry, S.: Hybrid system design for formations of autonomous vehicles. In: 42nd IEEE Conference on Decision and Control, vol. 1, pp. 1–6 (2003)Google Scholar
  9. 9.
    Perry, T.S.: In search of the future of air traffic control. IEEE Spectrum 34(8), 18 (1997)CrossRefGoogle Scholar
  10. 10.
    Bishop, J., Burden, S., Klavins, E., Kreisberg, R., Malone, W., Napp, N., Nguyen, T.: Self-organizing programmable parts. In: International Conference on Intelligent Robots and Systems (2005)Google Scholar
  11. 11.
    Yim, M., Zhang, Z., Duff, D.: Modular robots. IEEE Spectrum 39(2), 30 (2002)CrossRefGoogle Scholar
  12. 12.
    Østergaard, E.H.: Distributed Control of the ATRON Self-Reconfigurable Robot. PhD thesis, Maersk McKinney Moller Institute for Production Technology, University of Southern Denmark (2004)Google Scholar
  13. 13.
    Deshpande, A., Göllü, A., Semenzato, L.: The SHIFT programming language and run-time system for dynamic networks of hybrid systems. IEEE Transactions on Automatic Control 43(4), 584–587 (1998)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Milner, R.: Communicating and Mobile Systems: the π-calculus. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  15. 15.
    Aldini, A., Bernardo, M.: On the usability of process algebra: An architectural view. Theoretical Computer Science 335(2-3), 281 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Attie, P.C., Lynch, N.A.: Dynamic input/output automata: a formal model for dynamic systems. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 137–151. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  17. 17.
    Teich, J., Koster, M. (Self-)reconfigurable finite state machines: Theory and implementation. In: Proceedings of the conference on Design, automation and test in Europe, pp. 559–568 (2002)Google Scholar
  18. 18.
    Kratz, F.: A modeling language for reconfigurable distributed hybrid systems. Master’s thesis, Technische Universiteit Eindhoven (2005)Google Scholar
  19. 19.
    Antoniotti, M., Göllü, A.: SHIFT and SmartAHS: A language for hybrid systems engineering, modeling, and simulation. In: Proceedings of the USENIX Conference of Domain Specific Languages (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Fabian Kratz
    • 1
  • Oleg Sokolsky
    • 2
  • George J. Pappas
    • 2
  • Insup Lee
    • 2
  1. 1.Eindhoven University of Technology (TU/e)EindhovenThe Netherlands
  2. 2.University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations