Approximate Abstraction of Stochastic Hybrid Automata

  • A. Agung Julius
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)

Abstract

This paper discusses a notion of approximate abstraction for linear stochastic hybrid automata (LSHA). The idea is based on the construction of the so called stochastic bisimulation function. Such function can be used to quantify the distance between a system and its approximate abstraction. The work in this paper generalizes our earlier work for jump linear stochastic systems (JLSS). In this paper we demonstrate that linear stochastic hybrid automata can be cast as a modified JLSS and modify the procedure for constructing the stochastic bisimulation function accordingly. The construction of quadratic stochastic bisimulation functions is essentially a linear matrix inequality problem. In this paper, we also discuss possible extensions of the framework to handle nonlinear dynamics and variable rate Poisson processes. As an example, we apply the framework to a chain-like stochastic hybrid automaton.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pola, G., Bujorianu, M., Lygeros, J., Benedetto, M.D.: Stochastic hybrid models: an overview. In: Proc. IFAC Conf. Analysis and Design of Hybrid Systems, St. Malo, IFAC (2003)Google Scholar
  2. 2.
    Hespanha, J.P.: Stochastic hybrid systems: applications to communication networks. In: [21], pp. 387–401Google Scholar
  3. 3.
    Hu, J., Wu, W.C., Sastry, S.: Modeling subtilin production in bacillus subtilis using stochastic hybrid systems. In: [21], pp. 417–431Google Scholar
  4. 4.
    Glover, W., Lygeros, J.: A stochastic hybrid model for air traffic control simulation. In: [21], pp. 372–386Google Scholar
  5. 5.
    Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Oksendal, B.: Stochastic differential equations: an introduction with applications. Springer, Berlin (2000)MATHGoogle Scholar
  7. 7.
    Ghosh, M.K., Arapostathis, A., Marcus, S.: Ergodic control of switching diffusions. SIAM Journal on Control and Optimization 35(6), 1952–1988 (1997)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Davis, M.H.A.: Markov models and optimization. Chapman and Hall, London (1993)CrossRefMATHGoogle Scholar
  9. 9.
    Bujorianu, M.L., Lygeros, J., Bujorianu, M.C.: Bisimulation for general stochastic hybrid systems. In: [22], pp. 198–214Google Scholar
  10. 10.
    Strubbe, S., van der Schaft, A.J.: Bisimulation for communicating piecewise deterministic Markov processes. 623–639Google Scholar
  11. 11.
    Ying, M., Wirsing, M.: Approximate bisimilarity. In: Rus, T. (ed.) AMAST 2000. LNCS, vol. 1816, pp. 309–322. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Girard, A., Pappas, G.J.: Approximate bisimulation for constrained linear systems. to appear in the Proceedings of the IEEE Conf. Decision and Control (2005)Google Scholar
  13. 13.
    Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theoretical Computer Science 318(3), 323–354 (2004)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    van Breugel, F., Worrell, J.: An algorithm for quantitative verification of probabilistic transition systems. In: Proc. of CONCUR, Aalborg, pp. 336–350. Springer, Heidelberg (2001)Google Scholar
  15. 15.
    Julius, A.A., Girard, A., Pappas, G.J.: Approximate bisimulation for a class of stochastic hybrid systems. submitted to the American Control Conference 2006 (2005)Google Scholar
  16. 16.
    Prajna, S., Jadbabaie, A., Pappas, G.J.: Stochastic safety verification using barrier certificates. In: Proc. 43rd IEEE Conference on Decision and Control, Bahamas, IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  17. 17.
    Prajna, S., Papachristodoulou, A., Seiler, P., Parillo, P.A.: SOSTOOLS and its control application. In: Positive polynomials in control, Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Neogi, N.A.: Dynamic partitioning of large discrete event biological systems for hybrid simulation and analysis. 463 – 476Google Scholar
  19. 19.
    Hespanha, J.P.: Polynomial stochastic hybrid systems. 322–338Google Scholar
  20. 20.
  21. 21.
    Alur, R., Pappas, G.J. (eds.): HSCC 2004. LNCS, vol. 2993. Springer, Heidelberg (2004)MATHGoogle Scholar
  22. 22.
    Morari, M., Thiele, L. (eds.): HSCC 2005. LNCS, vol. 3414. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Agung Julius
    • 1
  1. 1.Dept. Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations