Reachability Analysis of Large-Scale Affine Systems Using Low-Dimensional Polytopes

  • Zhi Han
  • Bruce H. Krogh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)


This paper presents a method for computing the reach set of affine systems for sets of initial states given as low-dimensional polytopes. An affine representation for polytopes is introduced to improve the efficiency of set representations. Using the affine representation, we present a procedure to compute conservative over-approximations of the reach set, which uses the Krylov subspace approximation method to handle large-scale affine systems (systems of order over 100).


Krylov Subspace Reachability Analysis Krylov Subspace Method Hybrid Dynamic System Linear System Model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Girard, A.: Reachability of uncertain linear systems using zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Stursberg, O., Krogh, B.H.: On efficient representation and computation of reachable sets for hybrid systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 482–497. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 32–47. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Girard, A., Pappas, G.J.: Approximation metrics for discrete and continuous systems. Technical Report MS-CIS-05-10, Dept. of CIS, University of Pennsylvania (2005)Google Scholar
  5. 5.
    Bemporad, A., Pilippi, C., Torrisi, F.D.: Inner and outer approximation of polytopes using boxes. Computational Geometry: Theory and Applications 27(2), 151–178 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Ma, J.D., Rutenbar, R.A.: Interval-valued reduced order statistical interconnect modeling. In: Computer Aided Design, 2004. IEEE/ACM International Conference on, pp. 1092–3152 (2004)Google Scholar
  8. 8.
    de Figueiredo, L.H., Stolf, J.: Self-Validated Numerical Methods and Applications, Rio de Janeiro, Brazil. Brazilian Mathematics Colloquium monograph, IMPA (1997)Google Scholar
  9. 9.
    Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM Journal of Numerical Analysis 20(1), 209–228 (1992)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Grünbaum, B.: Convex Polytopes, 2nd edn. Springer, New York (2003)CrossRefMATHGoogle Scholar
  11. 11.
    Chutinan, A., Krogh, B.H.: Compuational techniques for hybrid system verification. IEEE Transaction on Automatic Control 48(1), 64–75 (2003)CrossRefMATHGoogle Scholar
  12. 12.
    Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Review 45(1), 3–49 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Sidje, R.B.: Expokit: Software package for computing matrix exponentials. ACM Transactions on Mathematical Software 24(1), 130–156 (1998)CrossRefMATHGoogle Scholar
  14. 14.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press (1996)Google Scholar
  15. 15.
    Han, Z.: Reachability analysis of continuous dynamic systems using dimension reduction and decomposition. PhD thesis, Carnegie Mellon University (2005)Google Scholar
  16. 16.
    Farlow, S.J.: Partial Differential Equations for Scientists and Engineers. Dover Publications, Inc. (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhi Han
    • 1
  • Bruce H. Krogh
    • 1
  1. 1.Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations