Efficient Computation of Reachable Sets of Linear Time-Invariant Systems with Inputs

  • Antoine Girard
  • Colas Le Guernic
  • Oded Maler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)


This work is concerned with the problem of computing the set of reachable states for linear time-invariant systems with bounded inputs. Our main contribution is a novel algorithm which improves significantly the computational complexity of reachability analysis. Algorithms to compute over and under-approximations of the reachable sets are proposed as well. These algorithms are not subject to the wrapping effect and therefore our approximations are tight. We show that these approximations are useful in the context of hybrid systems verification and control synthesis. The performance of a prototype implementation of the algorithm confirms its qualities and gives hope for scaling up verification technology for continuous and hybrid systems.


Hybrid System Recurrence Relation Memory Consumption Reachable State Reachability Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACH+95]
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The Algorithmic Analysis of Hybrid Systems. Theoretical Computer Science 138, 3–34 (1995)MathSciNetCrossRefMATHGoogle Scholar
  2. [ABDM00]
    Asarin, A., Bournez, O., Dang, T., Maler, O.: Approximate Reachability Analysis of Piecewise-linear Dynamical Systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. [ABD+00]
    Asarin, E., Bournez, O., Dang, T., Maler, O., Pnueli, A.: Effective Synthesis of Switching Controllers for Linear Systems. Proceedings of the IEEE 88, 1011–1025 (2000)CrossRefGoogle Scholar
  4. [ADG03]
    Asarin, E., Dang, T., Girard, A.: Reachability Analysis of Nonlinear Systems using Conservative Approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 20–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. [AMP95]
    Asarin, E., Maler, O., Pnueli, A.: Reachability Analysis of Dynamical Systems having Piecewise-Constant Derivatives. Theoretical Computer Science 138, 35–65 (1995)MathSciNetCrossRefMATHGoogle Scholar
  6. [BT00]
    Botchkarev, O., Tripakis, S.: Verification of Hybrid Systems with Linear Differential Inclusions using Ellipsoidal Approximations. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. [C05]
    The Caml Language webpage (2005), http://caml.inria.fr/
  8. [CK98]
    Chutinan, A., Krogh, B.H.: Computing Polyhedral Approximations to Dynamic Flow Pipes. In: CDC 1998, IEEE, Los Alamitos (1998)Google Scholar
  9. [CK99]
    Chutinan, A., Krogh, B.H.: Verification of Polyhedral-invariant Hybrid Automata using Polygonal Flow Pipe Approximations. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 76–90. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. [CK03]
    Chutinan, A., Krogh, B.H.: Computational Techniques for Hybrid System Verification. IEEE Trans. on Automatic Control 48, 64–75 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. [CW90]
    Coppersmith, D., Winograd, S.: Matrix Multiplication via Arithmetic Progressions. J. Symbolic Computation 9, 251–280 (1990)MathSciNetCrossRefMATHGoogle Scholar
  12. [D00]
    Dang, T.: Verification and Synthesis of Hybrid Systems, PhD thesis, Institut National Polytechnique de Grenoble, Laboratoire Verimag (2000)Google Scholar
  13. [DM98]
    Dang, T., Maler, O.: Reachability Analysis via Face Lifting. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 96–109. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. [F05]
    PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)Google Scholar
  15. [G05]
    Girard, A.: Reachability of Uncertain Linear Systems using Zonotopes. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. [G96]
    Greenstreet, M.R.: Verifying Safety Properties of Differential Equations. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 277–287. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. [GM99]
    Greenstreet, M.R., Mitchell, I.: Reachability Analysis using Polygonal Projections. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 103–116. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. [HHW97]
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A Model Checker for Hybrid Systems. Software Tools for Technology Transfer 1, 110–122 (1997)CrossRefMATHGoogle Scholar
  19. [K98]
    Kühn, W.: Rigorously Computed Orbits of Dynamical Systems without the Wrapping Rffect. Computing 61, 47–68 (1998)MathSciNetCrossRefMATHGoogle Scholar
  20. [K99]
    Kühn, W.: Towards an Optimal Control of the Wrapping Effect. In: SCAN 1998, Developments in Reliable Computing, pp. 43–51. Kluwer, Dordrecht (1999)CrossRefGoogle Scholar
  21. [KV97]
    Kurzhanski, A., Valyi, I.: Ellipsoidal Calculus for Estimation and Control. Birkhauser (1997)Google Scholar
  22. [KV00]
    Kurzhanski, A.B., Varaiya, P.: Ellipsoidal Techniques for Reachability Analysis. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 202–214. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  23. [M02]
    Maler, O.: Control from Computer Science. Annual Reviews in Control 26, 175–187 (2002)CrossRefGoogle Scholar
  24. [MT00]
    Mitchell, I., Tomlin, C.: Level Set Methods for Computation in Hybrid Systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 310–323. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  25. [V98]
    Varaiya, P.: Reach Set computation using Optimal Control. In: KIT Workshop, Verimag, Grenoble, pp. 377–383 (1998)Google Scholar
  26. [Z75]
    Zaslavsky, T.: Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes. In: Memoirs of the AMS, vol. 154, American Mathematical Society (1975)Google Scholar
  27. [VS99]
    Vaandrager, F.W., van Schuppen, J.H. (eds.): HSCC 1999. LNCS, vol. 1569. Springer, Heidelberg (1999)Google Scholar
  28. [LK00]
    Lynch, N.A., Krogh, B.H. (eds.): HSCC 2000. LNCS, vol. 1790. Springer, Heidelberg (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Antoine Girard
    • 1
  • Colas Le Guernic
    • 2
  • Oded Maler
    • 3
  1. 1.Department of Electrical and Systems EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.École Normale SupérieureParisFrance
  3. 3.VERIMAGGièresFrance

Personalised recommendations