Reconstruction of Switching Thresholds in Piecewise-Affine Models of Genetic Regulatory Networks

  • S. Drulhe
  • G. Ferrari-Trecate
  • H. de Jong
  • A. Viari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)


Recent advances of experimental techniques in biology have led to the production of enormous amounts of data on the dynamics of genetic regulatory networks. In this paper, we present an approach for the identification of PieceWise-Affine (PWA) models of genetic regulatory networks from experimental data, focusing on the reconstruction of switching thresholds associated with regulatory interactions. In particular, our method takes into account geometric constraints specific to models of genetic regulatory networks. We show the feasibility of our approach by the reconstruction of switching thresholds in a PWA model of the carbon starvation response in the bacterium Escherichia coli.


Hybrid System Stable RNAs Hybrid Automaton Genetic Regulatory Network Separation Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D’haeseleer, P., Liang, S., Somogyi, R.: Genetic network inference: From co-expression clustering to reverse engineering. Bioinformatics 16, 707–726 (2000)CrossRefGoogle Scholar
  2. 2.
    Gardner, T., di Bernardo, D., Lorenz, D., Collins, J.: Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–105 (2003)CrossRefGoogle Scholar
  3. 3.
    van Someren, E., Wessels, L., Reinders, M.: Linear modeling of genetic networks from experimental data. In: Altman, R., et al. (eds.) Proc. Eight Int. Conf. Intell. Syst. Mol. Biol., ISMB 2000, pp. 355–366. AAAI Press, Menlo Park (2000)Google Scholar
  4. 4.
    Lemeille, S., Latifi, A., Geiselmann, J.: Inferring the connectivity of a regulatory network from mRNA quantification in Synechocystis PCC6803. Nucleic Acids Res. 33, 3381–3389 (2005)CrossRefGoogle Scholar
  5. 5.
    Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K., Manu, M.E., Vanario-Alonso, C., Samsonova, M., Sharp, D., Reinitz, J.: Dynamic control of positional information in the early Drosophila embryo. Nature 430, 368–371 (2004)CrossRefGoogle Scholar
  6. 6.
    Ronen, M., Rosenberg, R., Shraiman, B., Alon, U.: Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. USA 99, 10555–10560 (2002)CrossRefGoogle Scholar
  7. 7.
    Glass, L., Kauffman, S.: The logical analysis of continuous non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)CrossRefGoogle Scholar
  8. 8.
    Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Page, M., Schneider, D.: Qualitative analysis and verification of hybrid models of genetic regulatory networks: Nutritional stress response in Escherichia coli. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 134–150. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Belta, C., Finin, P., Habets, L., Halász, A., Imiliǹski, M., Kumar, R., Rubin, H.: Understanding the bacterial stringent response using reachability analysis of hybrid systems. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 111–125. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    de Jong, H., Gouzé, J.L., Hernandez, C., Page, M., Sari, T., Geiselmann, J.: Qualitative simulation of genetic regulatory networks using piecewise-linear models. Bull. Math. Biol. 66, 301–340 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Edwards, R., Siegelmann, H., Aziza, K., Glass, L.: Symbolic dynamics and computation in model gene networks. Chaos 11, 160–169 (2001)CrossRefGoogle Scholar
  12. 12.
    Ghosh, R., Tomlin, C.: Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-Notch protein signalling. Syst. Biol. 1, 170–183 (2004)CrossRefGoogle Scholar
  13. 13.
    Mestl, T., Plahte, E., Omholt, S.: A mathematical framework for describing and analysing gene regulatory networks. J. Theor. Biol. 176, 291–300 (1995)CrossRefMATHGoogle Scholar
  14. 14.
    Ropers, D., de Jong, H., Page, M., Schneider, D., Geiselmann, J.: Qualitative simulation of the carbon starvation response in Escherichia coli. BioSystems (in press, 2006)Google Scholar
  15. 15.
    Juloski, A.L., Heemels, W.P.M.H., Ferrari-Trecate, G., Vidal, R., Paoletti, S., Niessen, J.H.G.: Comparison of four procedures for the identification of hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 354–369. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Perkins, T., Hallett, M., Glass, L.: Inferring models of gene expression dynamics. J. Theor. Biol. 230, 289–299 (2004)MathSciNetCrossRefGoogle Scholar
  17. 17.
    de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. J. Comput. Biol. 9, 67–103 (2002)CrossRefGoogle Scholar
  18. 18.
    Ferrari-Trecate, G., Muselli, M., Liberati, D., Morari, M.: A clustering technique for the identification of piecewise affine and hybrid systems. Automatica 39, 205–217 (2003)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Bennett, K., Mangasarian, O.: Multicategory discrimination via linear programming. Optimization Methods and Software 3, 27–39 (1993)CrossRefGoogle Scholar
  20. 20.
    Vapnik, V.: Statistical Learning Theory. John Wiley, NY (1998)MATHGoogle Scholar
  21. 21.
    Drulhe, S., Ferrari-Trecate, G., de Jong, H., Viari, A.: Reconstruction of switching thresholds in piecewise-affine models of genetic regulatory networks. Technical report, INRIA (2005),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • S. Drulhe
    • 1
  • G. Ferrari-Trecate
    • 2
    • 3
  • H. de Jong
    • 1
  • A. Viari
    • 1
  1. 1.INRIA Rhône-AlpesMontbonnot, Saint IsmierFrance
  2. 2.INRIARocquencourt, Le ChesnayFrance
  3. 3.Dipartimento di Informatica e SistemisticaUniversità degli Studi di PaviaPaviaItaly

Personalised recommendations