Observability of Hybrid Automata by Abstraction

  • A. D’Innocenzo
  • M. D. Di Benedetto
  • S. Di Gennaro
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)


In this paper, we deal with the observability problem of a class of Hybrid Systems whose output is a timed string on a finite alphabet. We determine under which conditions it is always possible to immediately detect, using the observed output, when the system enters a given discrete state. We illustrate how to construct a Timed Automaton that is an abstraction of the given Hybrid System, and that preserves its observability properties. Moreover, we propose a verification algorithm with polynomial complexity for checking the observability of the Timed Automaton, and a constructive procedure for an observer of the discrete state.


Hybrid System Discrete State Discrete Transition Hybrid Automaton Time Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems. Proccedings of the IEEE 88(2), 971–984 (2000)CrossRefGoogle Scholar
  2. 2.
    Anai, H., Weispfenning, V.: Reach set computations using real quantifier elimination. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 63–76. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Babaali, M., Pappas, G.J.: Observability of switched linear systems in continuous time. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 103–117. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Balluchi, A., Benvenuti, L., Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L.: Design of Observers for Hybrid Systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002. LNCS, vol. 2289, pp. 76–89. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Chutinan, A., Krogh, B.: Computing polyhedral approximations to flow pipes for dynamic systems. In: Proceedings of the 37t h IEEE Conference on Decision and Control, Tampa, December 1998, pp. 2089–2094 (1998)Google Scholar
  6. 6.
    Chutinan, A., Krogh, B.H.: Computing approximating automata for a class of linear hybrid systems. In: Hybrid Systems V. LNCS, pp. 16–37. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge, Massachusetts (2002)Google Scholar
  8. 8.
    De Santis, E., Di Benedetto, M.D., Pola, G.: On Observability and Detectability of continuous-time Switching Linear Systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control, CDC 2003, Maui, Hawaii, USA, December 2003, pp. 5777–5782 (2003)Google Scholar
  9. 9.
    Di Benedetto, M.D., Di Gennaro, S., D’Innocenzo, A.: Critical Observability and Hybrid Observers for Error Detection in Air Traffic Management. In: 13th Mediterranean Conference on Control and Automation, Limassol, Cyprus, June 27-29 (2005)Google Scholar
  10. 10.
    Di Benedetto, M.D., Di Gennaro, S., D’Innocenzo, A.: Error Detection within a Specific Time Horizon and Application to Air Traffic Management. In: Proceedings of the Joint 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2005), Seville, Spain, December 2005, pp. 7472–7477 (2005)Google Scholar
  11. 11.
    Girard, A.: Reachability of Uncertain Linear Systems using Zonotopes. In: Morari, M., Thiele, L. (eds.) Hybrid Systems: Computation and Control 2005. LNCS, vol. 3414, pp. 291–305. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computations for families of linear vector fields. Journal of Symbolic Computation 32(3), 231–253 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lygeros, J., Tomlin, C., Sastry, S.: Controllers for reachability specications for hybrid systems. Automatica, Special Issue on Hybrid Systems 35 (1999)Google Scholar
  14. 14.
    Oishi, M., Hwang, I., Tomlin, C.: Immediate Observability of Discrete Event Systems with Application to User-Interface Design. In: Proceedings of the 42nd IEEE Conference on Decision and Control, Maui, Hawaii USA, December 2003, pp. 2665–2672 (2003)Google Scholar
  15. 15.
    Ozveren, C.M., Willsky, A.S.: Observability of Discrete Event Dynamic Systems. IEEE Transactions on Automatic Control 35, 797–806 (1990)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Tripakis, S.: Fault Diagnosis for Timed Automata. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Vidal, R., Chiuso, A., Soatto, S., Sastry, S.: Observability of Linear Hybrid Systems. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 526–539. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Yazarel, H., Pappas, G.J.: Geometric programming relaxations for linear system reachability. In: Proceedings of the 2004 American Control Conference, Boston, MA (June 2004)Google Scholar
  19. 19.
    Yoo, T., Lafortune, S.: On The Computational Complexity Of Some Problems Arising In Partially-observed Discrete-Event Systems. In: Proceedings of the 2001 American Control Conference, Arlington, Virginia, June 25-27 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. D’Innocenzo
    • 1
  • M. D. Di Benedetto
    • 1
  • S. Di Gennaro
    • 1
  1. 1.Department of Electrical Engineering and Computer ScienceUniversity of L’AquilaItaly

Personalised recommendations