A Lattice Theory for Solving Games of Imperfect Information

  • Martin De Wulf
  • Laurent Doyen
  • Jean-François Raskin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)


In this paper, we propose a fixed point theory to solve games of imperfect information. The fixed point theory is defined on the lattice of antichains of sets of states. Contrary to the classical solution proposed by Reif [Rei84], our new solution does not involve determinization. As a consequence, it is readily applicable to classes of systems that do not admit determinization. Notable examples of such systems are timed and hybrid automata. As an application, we show that the discrete control problem for games of imperfect information defined by rectangular automata is decidable. This result extends a result by Henzinger and Kopke in [HK99].


Control Problem Incomplete Information Lattice Theory Perfect Information Imperfect Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACH+95]
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)MathSciNetCrossRefMATHGoogle Scholar
  2. [AD94]
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. [AHK02]
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49, 672–713 (2002)MathSciNetCrossRefMATHGoogle Scholar
  4. [CC77]
    Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL, pp. 238–252 (1977)Google Scholar
  5. [DDR06]
    De Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect information (extended version). Technical Report 58, U.L.B. – Federated Center in Verification (2006), http://www.ulb.ac.be/di/ssd/cfv/publications.html
  6. [HHWT95]
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: A user guide to HyTech. In: Brinksma, E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 41–71. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  7. [HK99]
    Henzinger, T.A., Kopke, P.W.: Discrete-time control for rectangular hybrid automata. Theoretical Computer Science 221, 369–392 (1999)MathSciNetCrossRefMATHGoogle Scholar
  8. [MPS95]
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–242. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  9. [Rei84]
    Reif, J.H.: The complexity of two-player games of incomplete information. Journal of Computer and System Sciences 29(2), 274–301 (1984)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin De Wulf
    • 1
  • Laurent Doyen
    • 1
  • Jean-François Raskin
    • 1
  1. 1.Département d’InformatiqueUniversité Libre de BruxellesBelgium

Personalised recommendations